These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


279 related items for PubMed ID: 17564472

  • 1. Raft domain reorganization driven by short- and long-chain ceramide: a combined AFM and FCS study.
    Chiantia S, Kahya N, Schwille P.
    Langmuir; 2007 Jul 03; 23(14):7659-65. PubMed ID: 17564472
    [Abstract] [Full Text] [Related]

  • 2. Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS.
    Chiantia S, Kahya N, Ries J, Schwille P.
    Biophys J; 2006 Jun 15; 90(12):4500-8. PubMed ID: 16565041
    [Abstract] [Full Text] [Related]

  • 3. Combined AFM and two-focus SFCS study of raft-exhibiting model membranes.
    Chiantia S, Ries J, Kahya N, Schwille P.
    Chemphyschem; 2006 Nov 13; 7(11):2409-18. PubMed ID: 17051578
    [Abstract] [Full Text] [Related]

  • 4. Ceramide promotes restructuring of model raft membranes.
    Johnston I, Johnston LJ.
    Langmuir; 2006 Dec 19; 22(26):11284-9. PubMed ID: 17154617
    [Abstract] [Full Text] [Related]

  • 5. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers.
    Garner AE, Smith DA, Hooper NM.
    Mol Membr Biol; 2007 Dec 19; 24(3):233-42. PubMed ID: 17520480
    [Abstract] [Full Text] [Related]

  • 6. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN, Fernandes F, Fedorov A, Futerman AH, Silva LC, Prieto M.
    Biochim Biophys Acta; 2013 Sep 19; 1828(9):2099-110. PubMed ID: 23702462
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers.
    Sot J, Bagatolli LA, Goñi FM, Alonso A.
    Biophys J; 2006 Feb 01; 90(3):903-14. PubMed ID: 16284266
    [Abstract] [Full Text] [Related]

  • 10. Cholesterol displacement by ceramide in sphingomyelin-containing liquid-ordered domains, and generation of gel regions in giant lipidic vesicles.
    Sot J, Ibarguren M, Busto JV, Montes LR, Goñi FM, Alonso A.
    FEBS Lett; 2008 Sep 22; 582(21-22):3230-6. PubMed ID: 18755187
    [Abstract] [Full Text] [Related]

  • 11. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A, Draus J, Subczynski WK.
    Cell Mol Biol Lett; 2003 Sep 22; 8(1):147-59. PubMed ID: 12655369
    [Abstract] [Full Text] [Related]

  • 12. Targeting membrane proteins to liquid-ordered phases: molecular self-organization explored by fluorescence correlation spectroscopy.
    Kahya N.
    Chem Phys Lipids; 2006 Jun 22; 141(1-2):158-68. PubMed ID: 16696961
    [Abstract] [Full Text] [Related]

  • 13. Direct correlation of structures and nanomechanical properties of multicomponent lipid bilayers.
    Sullan RM, Li JK, Zou S.
    Langmuir; 2009 Jul 07; 25(13):7471-7. PubMed ID: 19292499
    [Abstract] [Full Text] [Related]

  • 14. Effect of ceramide N-acyl chain and polar headgroup structure on the properties of ordered lipid domains (lipid rafts).
    Megha, Sawatzki P, Kolter T, Bittman R, London E.
    Biochim Biophys Acta; 2007 Sep 07; 1768(9):2205-12. PubMed ID: 17574203
    [Abstract] [Full Text] [Related]

  • 15. The polar nature of 7-ketocholesterol determines its location within membrane domains and the kinetics of membrane microsolubilization by apolipoprotein A-I.
    Massey JB, Pownall HJ.
    Biochemistry; 2005 Aug 02; 44(30):10423-33. PubMed ID: 16042420
    [Abstract] [Full Text] [Related]

  • 16. Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy.
    Shaw JE, Alattia JR, Verity JE, Privé GG, Yip CM.
    J Struct Biol; 2006 Apr 02; 154(1):42-58. PubMed ID: 16459101
    [Abstract] [Full Text] [Related]

  • 17. Phase separation is induced by phenothiazine derivatives in phospholipid/sphingomyelin/cholesterol mixtures containing low levels of cholesterol and sphingomyelin.
    Hendrich AB, Michalak K, Wesołowska O.
    Biophys Chem; 2007 Oct 02; 130(1-2):32-40. PubMed ID: 17662517
    [Abstract] [Full Text] [Related]

  • 18. Nanoscale imaging of domains in supported lipid membranes.
    Johnston LJ.
    Langmuir; 2007 May 22; 23(11):5886-95. PubMed ID: 17428076
    [Abstract] [Full Text] [Related]

  • 19. Distinguishing individual lipid headgroup mobility and phase transitions in raft-forming lipid mixtures with 31P MAS NMR.
    Holland GP, McIntyre SK, Alam TM.
    Biophys J; 2006 Jun 01; 90(11):4248-60. PubMed ID: 16533851
    [Abstract] [Full Text] [Related]

  • 20. Atomic force microscopy study of ganglioside GM1 concentration effect on lateral phase separation of sphingomyelin/dioleoylphosphatidylcholine/cholesterol bilayers.
    Bao R, Li L, Qiu F, Yang Y.
    J Phys Chem B; 2011 May 19; 115(19):5923-9. PubMed ID: 21526782
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.