These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Thermodynamic dissection of the polymerizing and editing modes of a DNA polymerase. Bailey MF, van der Schans EJ, Millar DP. J Mol Biol; 2004 Feb 20; 336(3):673-93. PubMed ID: 15095980 [Abstract] [Full Text] [Related]
3. Recognition of sequence-directed DNA structure by the Klenow fragment of DNA polymerase I. Carver TE, Millar DP. Biochemistry; 1998 Feb 17; 37(7):1898-904. PubMed ID: 9485315 [Abstract] [Full Text] [Related]
7. Effects of mutations on the partitioning of DNA substrates between the polymerase and 3'-5' exonuclease sites of DNA polymerase I (Klenow fragment). Lam WC, Van der Schans EJ, Joyce CM, Millar DP. Biochemistry; 1998 Feb 10; 37(6):1513-22. PubMed ID: 9484221 [Abstract] [Full Text] [Related]
8. Use of fluorescence resonance energy transfer to investigate the conformation of DNA substrates bound to the Klenow fragment. Furey WS, Joyce CM, Osborne MA, Klenerman D, Peliska JA, Balasubramanian S. Biochemistry; 1998 Mar 03; 37(9):2979-90. PubMed ID: 9485450 [Abstract] [Full Text] [Related]
9. Phe 771 of Escherichia coli DNA polymerase I (Klenow fragment) is the major site for the interaction with the template overhang and the stabilization of the pre-polymerase ternary complex. Srivastava A, Singh K, Modak MJ. Biochemistry; 2003 Apr 08; 42(13):3645-54. PubMed ID: 12667054 [Abstract] [Full Text] [Related]
10. Mechanism for N-acetyl-2-aminofluorene-induced frameshift mutagenesis by Escherichia coli DNA polymerase I (Klenow fragment). Gill JP, Romano LJ. Biochemistry; 2005 Nov 22; 44(46):15387-95. PubMed ID: 16285743 [Abstract] [Full Text] [Related]
11. Contribution of polar residues of the J-helix in the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): Q677 regulates the removal of terminal mismatch. Singh K, Modak MJ. Biochemistry; 2005 Jun 07; 44(22):8101-10. PubMed ID: 15924429 [Abstract] [Full Text] [Related]
12. Fidelity of mispair formation and mispair extension is dependent on the interaction between the minor groove of the primer terminus and Arg668 of DNA polymerase I of Escherichia coli. McCain MD, Meyer AS, Schultz SS, Glekas A, Spratt TE. Biochemistry; 2005 Apr 19; 44(15):5647-59. PubMed ID: 15823023 [Abstract] [Full Text] [Related]
13. Mapping the position of DNA polymerase-bound DNA templates in a nanopore at 5 A resolution. Gyarfas B, Olasagasti F, Benner S, Garalde D, Lieberman KR, Akeson M. ACS Nano; 2009 Jun 23; 3(6):1457-66. PubMed ID: 19489560 [Abstract] [Full Text] [Related]
16. Mechanistic insights into replication across from bulky DNA adducts: a mutant polymerase I allows an N-acetyl-2-aminofluorene adduct to be accommodated during DNA synthesis. Lone S, Romano LJ. Biochemistry; 2003 Apr 08; 42(13):3826-34. PubMed ID: 12667073 [Abstract] [Full Text] [Related]
20. [Interaction of dNTP-binding sites of human DNA polymerase alpha and The Klenow fragment of Escherichia coli DNA polymerase I with nucleotides, pyrophosphate and their analogs]. Nevinskiĭ GA, Potapova IA, Tarusova NB, Khalabuda OV, Khomov VV. Mol Biol (Mosk); 1990 Apr 08; 24(1):104-16. PubMed ID: 2161489 [Abstract] [Full Text] [Related] Page: [Next] [New Search]