These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


164 related items for PubMed ID: 17567742

  • 21. The mechanism of aconitase action. Evidence for an enzyme isomerization by studies of inhibition by tricarboxylic acids.
    Villafranca JJ.
    J Biol Chem; 1974 Oct 10; 249(19):6149-55. PubMed ID: 4422090
    [No Abstract] [Full Text] [Related]

  • 22. Distinct reactions catalyzed by bacterial and yeast trans-aconitate methyltransferases.
    Cai H, Strouse J, Dumlao D, Jung ME, Clarke S.
    Biochemistry; 2001 Feb 20; 40(7):2210-9. PubMed ID: 11329290
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Structural mechanism governing cis and trans isomeric states and an intramolecular switch for cis/trans isomerization of a non-proline peptide bond observed in crystal structures of scorpion toxins.
    Guan RJ, Xiang Y, He XL, Wang CG, Wang M, Zhang Y, Sundberg EJ, Wang DC.
    J Mol Biol; 2004 Aug 27; 341(5):1189-204. PubMed ID: 15321715
    [Abstract] [Full Text] [Related]

  • 25. Biochemical characterisation of aconitase from Corynebacterium glutamicum.
    Baumgart M, Bott M.
    J Biotechnol; 2011 Jul 10; 154(2-3):163-70. PubMed ID: 20647021
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Steric and conformational features of the aconitase mechanism.
    Lauble H, Stout CD.
    Proteins; 1995 May 10; 22(1):1-11. PubMed ID: 7675781
    [Abstract] [Full Text] [Related]

  • 28. Constitutive production of aconitate isomerase by Pseudomonas sp. WU-0701 in relation to trans-aconitic acid assimilation.
    Takiguchi A, Yoshioka I, Oda Y, Ishii Y, Kirimura K.
    J Biosci Bioeng; 2021 Jan 10; 131(1):47-52. PubMed ID: 32994133
    [Abstract] [Full Text] [Related]

  • 29. Oxidation, accumulation, and turnover of citrate in normal and diabetic rats.
    Cuestas R, Dixit PK.
    Proc Soc Exp Biol Med; 1974 Oct 10; 147(1):181-7. PubMed ID: 4438322
    [No Abstract] [Full Text] [Related]

  • 30. Crystal structures of aconitase X enzymes from bacteria and archaea provide insights into the molecular evolution of the aconitase superfamily.
    Watanabe S, Murase Y, Watanabe Y, Sakurai Y, Tajima K.
    Commun Biol; 2021 Jun 07; 4(1):687. PubMed ID: 34099860
    [Abstract] [Full Text] [Related]

  • 31. Enzymatic characterization and gene identification of aconitate isomerase, an enzyme involved in assimilation of trans-aconitic acid, from Pseudomonas sp. WU-0701.
    Yuhara K, Yonehara H, Hattori T, Kobayashi K, Kirimura K.
    FEBS J; 2015 Nov 07; 282(22):4257-67. PubMed ID: 26293748
    [Abstract] [Full Text] [Related]

  • 32. The mechanism of aconitase: 1.8 A resolution crystal structure of the S642a:citrate complex.
    Lloyd SJ, Lauble H, Prasad GS, Stout CD.
    Protein Sci; 1999 Dec 07; 8(12):2655-62. PubMed ID: 10631981
    [Abstract] [Full Text] [Related]

  • 33. Engineering of monomeric FK506-binding protein 22 with peptidyl prolyl cis-trans isomerase. Importance of a V-shaped dimeric structure for binding to protein substrate.
    Budiman C, Bando K, Angkawidjaja C, Koga Y, Takano K, Kanaya S.
    FEBS J; 2009 Aug 07; 276(15):4091-101. PubMed ID: 19558490
    [Abstract] [Full Text] [Related]

  • 34. Automated docking in crystallography: analysis of the substrates of aconitase.
    Goodsell DS, Lauble H, Stout CD, Olson AJ.
    Proteins; 1993 Sep 07; 17(1):1-10. PubMed ID: 8234239
    [Abstract] [Full Text] [Related]

  • 35. Versatile architecture of a bacterial aconitase B and its catalytic performance in the sequential reaction coupled with isocitrate dehydrogenase.
    Tsuchiya D, Shimizu N, Tomita M.
    Biochim Biophys Acta; 2008 Nov 07; 1784(11):1847-56. PubMed ID: 18640291
    [Abstract] [Full Text] [Related]

  • 36. Crystal structure of YihS in complex with D-mannose: structural annotation of Escherichia coli and Salmonella enterica yihS-encoded proteins to an aldose-ketose isomerase.
    Itoh T, Mikami B, Hashimoto W, Murata K.
    J Mol Biol; 2008 Apr 11; 377(5):1443-59. PubMed ID: 18328504
    [Abstract] [Full Text] [Related]

  • 37. Evolution of enzymatic activities in the enolase superfamily: L-talarate/galactarate dehydratase from Salmonella typhimurium LT2.
    Yew WS, Fedorov AA, Fedorov EV, Almo SC, Gerlt JA.
    Biochemistry; 2007 Aug 21; 46(33):9564-77. PubMed ID: 17649980
    [Abstract] [Full Text] [Related]

  • 38. Enzymatic reaction mechanism of cis-aconitate decarboxylase based on the crystal structure of IRG1 from Bacillus subtilis.
    Chun HL, Lee SY, Lee SH, Lee CS, Park HH.
    Sci Rep; 2020 Jul 09; 10(1):11305. PubMed ID: 32647315
    [Abstract] [Full Text] [Related]

  • 39. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates.
    Basarab GS, Steffens JJ, Wawrzak Z, Schwartz RS, Lundqvist T, Jordan DB.
    Biochemistry; 1999 May 11; 38(19):6012-24. PubMed ID: 10320327
    [Abstract] [Full Text] [Related]

  • 40. Structures of KdnB and KdnA from Shewanella oneidensis: Key Enzymes in the Formation of 8-Amino-3,8-Dideoxy-d-Manno-Octulosonic Acid.
    Zachman-Brockmeyer TR, Thoden JB, Holden HM.
    Biochemistry; 2016 Aug 16; 55(32):4485-94. PubMed ID: 27275764
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.