These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1266 related items for PubMed ID: 17569737

  • 1. Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators.
    Juvin L, Simmers J, Morin D.
    J Physiol; 2007 Aug 15; 583(Pt 1):115-28. PubMed ID: 17569737
    [Abstract] [Full Text] [Related]

  • 2. Cervicolumbar coordination in mammalian quadrupedal locomotion: role of spinal thoracic circuitry and limb sensory inputs.
    Juvin L, Le Gal JP, Simmers J, Morin D.
    J Neurosci; 2012 Jan 18; 32(3):953-65. PubMed ID: 22262893
    [Abstract] [Full Text] [Related]

  • 3. Fictive locomotor patterns generated by tetraethylammonium application to the neonatal rat spinal cord in vitro.
    Taccola G, Nistri A.
    Neuroscience; 2006 Jan 18; 137(2):659-70. PubMed ID: 16289841
    [Abstract] [Full Text] [Related]

  • 4. Chapter 2--the spinal generation of phases and cycle duration.
    Gossard JP, Sirois J, Noué P, Côté MP, Ménard A, Leblond H, Frigon A.
    Prog Brain Res; 2011 Jan 18; 188():15-29. PubMed ID: 21333800
    [Abstract] [Full Text] [Related]

  • 5. Electromyographic activity patterns of ankle flexor and extensor muscles during spontaneous and L-DOPA-induced locomotion in freely moving neonatal rats.
    Navarrete R, Slawińska U, Vrbová G.
    Exp Neurol; 2002 Feb 18; 173(2):256-65. PubMed ID: 11822889
    [Abstract] [Full Text] [Related]

  • 6. Spatiotemporal characteristics of 5-HT and dopamine-induced rhythmic hindlimb activity in the in vitro neonatal rat.
    Kiehn O, Kjaerulff O.
    J Neurophysiol; 1996 Apr 18; 75(4):1472-82. PubMed ID: 8727391
    [Abstract] [Full Text] [Related]

  • 7. Properties of rhythmic activity generated by the isolated spinal cord of the neonatal mouse.
    Whelan P, Bonnot A, O'Donovan MJ.
    J Neurophysiol; 2000 Dec 18; 84(6):2821-33. PubMed ID: 11110812
    [Abstract] [Full Text] [Related]

  • 8. Forelimb locomotor generators and quadrupedal locomotion in the neonatal rat.
    Ballion B, Morin D, Viala D.
    Eur J Neurosci; 2001 Nov 18; 14(10):1727-38. PubMed ID: 11860467
    [Abstract] [Full Text] [Related]

  • 9. Coapplication of noisy patterned electrical stimuli and NMDA plus serotonin facilitates fictive locomotion in the rat spinal cord.
    Dose F, Taccola G.
    J Neurophysiol; 2012 Dec 18; 108(11):2977-90. PubMed ID: 22956799
    [Abstract] [Full Text] [Related]

  • 10. Serotonin refines the locomotor-related alternations in the in vitro neonatal rat spinal cord.
    Pearlstein E, Ben Mabrouk F, Pflieger JF, Vinay L.
    Eur J Neurosci; 2005 Mar 18; 21(5):1338-46. PubMed ID: 15813943
    [Abstract] [Full Text] [Related]

  • 11. Fictive hindlimb motor patterns evoked by AMPA and NMDA in turtle spinal cord-hindlimb nerve preparations.
    Currie SN.
    J Physiol Paris; 1999 Mar 18; 93(3):199-211. PubMed ID: 10399675
    [Abstract] [Full Text] [Related]

  • 12. Interaction between disinhibited bursting and fictive locomotor patterns in the rat isolated spinal cord.
    Beato M, Nistri A.
    J Neurophysiol; 1999 Nov 18; 82(5):2029-38. PubMed ID: 10561384
    [Abstract] [Full Text] [Related]

  • 13. Dynamics of early locomotor network dysfunction following a focal lesion in an in vitro model of spinal injury.
    Taccola G, Mladinic M, Nistri A.
    Eur J Neurosci; 2010 Jan 18; 31(1):60-78. PubMed ID: 20092556
    [Abstract] [Full Text] [Related]

  • 14. Low micromolar concentrations of 4-aminopyridine facilitate fictive locomotion expressed by the rat spinal cord in vitro.
    Taccola G, Nistri A.
    Neuroscience; 2004 Jan 18; 126(2):511-20. PubMed ID: 15207368
    [Abstract] [Full Text] [Related]

  • 15. Propriospinal circuitry underlying interlimb coordination in mammalian quadrupedal locomotion.
    Juvin L, Simmers J, Morin D.
    J Neurosci; 2005 Jun 22; 25(25):6025-35. PubMed ID: 15976092
    [Abstract] [Full Text] [Related]

  • 16. Control of transmission in muscle group IA afferents during fictive locomotion in the cat.
    Gossard JP.
    J Neurophysiol; 1996 Dec 22; 76(6):4104-12. PubMed ID: 8985904
    [Abstract] [Full Text] [Related]

  • 17. Flexibility of motor pattern generation across stimulation conditions by the neonatal rat spinal cord.
    Klein DA, Patino A, Tresch MC.
    J Neurophysiol; 2010 Mar 22; 103(3):1580-90. PubMed ID: 20089814
    [Abstract] [Full Text] [Related]

  • 18. Interaction between developing spinal locomotor networks in the neonatal mouse.
    Gordon IT, Dunbar MJ, Vanneste KJ, Whelan PJ.
    J Neurophysiol; 2008 Jul 22; 100(1):117-28. PubMed ID: 18436636
    [Abstract] [Full Text] [Related]

  • 19. Locomotor-related activity of GABAergic interneurons localized in the ventrolateral region in the isolated spinal cord of neonatal mice.
    Nishimaru H, Sakagami H, Kakizaki M, Yanagawa Y.
    J Neurophysiol; 2011 Oct 22; 106(4):1782-92. PubMed ID: 21734105
    [Abstract] [Full Text] [Related]

  • 20. Serotonergic modulation of sacral dorsal root stimulation-induced locomotor output in newborn rat.
    Oueghlani Z, Juvin L, Lambert FM, Cardoit L, Courtand G, Masmejean F, Cazalets JR, Barrière G.
    Neuropharmacology; 2020 Jun 15; 170():107815. PubMed ID: 31634501
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 64.