These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1266 related items for PubMed ID: 17569737

  • 21. Locomotor central pattern generator excitability states and serotonin sensitivity after spontaneous recovery from a neonatal lumbar spinal cord injury.
    Kondratskaya E, Ievglevskyi O, Züchner M, Samara A, Glover JC, Boulland JL.
    Brain Res; 2019 Apr 01; 1708():10-19. PubMed ID: 30521786
    [Abstract] [Full Text] [Related]

  • 22. Epidural spinal cord stimulation plus quipazine administration enable stepping in complete spinal adult rats.
    Gerasimenko YP, Ichiyama RM, Lavrov IA, Courtine G, Cai L, Zhong H, Roy RR, Edgerton VR.
    J Neurophysiol; 2007 Nov 01; 98(5):2525-36. PubMed ID: 17855582
    [Abstract] [Full Text] [Related]

  • 23. Alternating rhythmic activity induced by dorsal root stimulation in the neonatal rat spinal cord in vitro.
    Marchetti C, Beato M, Nistri A.
    J Physiol; 2001 Jan 01; 530(Pt 1):105-12. PubMed ID: 11136862
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Intercostal and abdominal respiratory motoneurons in the neonatal rat spinal cord: spatiotemporal organization and responses to limb afferent stimulation.
    Giraudin A, Cabirol-Pol MJ, Simmers J, Morin D.
    J Neurophysiol; 2008 May 01; 99(5):2626-40. PubMed ID: 18337363
    [Abstract] [Full Text] [Related]

  • 26. Contribution of commissural projections to bulbospinal activation of locomotion in the in vitro neonatal rat spinal cord.
    Cowley KC, Zaporozhets E, Joundi RA, Schmidt BJ.
    J Neurophysiol; 2009 Mar 01; 101(3):1171-8. PubMed ID: 19118107
    [Abstract] [Full Text] [Related]

  • 27. Kainate and metabolic perturbation mimicking spinal injury differentially contribute to early damage of locomotor networks in the in vitro neonatal rat spinal cord.
    Taccola G, Margaryan G, Mladinic M, Nistri A.
    Neuroscience; 2008 Aug 13; 155(2):538-55. PubMed ID: 18602453
    [Abstract] [Full Text] [Related]

  • 28. Sensory-evoked pocket scratch motor patterns in the in vitro turtle spinal cord: reduction of excitability by an N-methyl-D-aspartate antagonist.
    Currie SN, Lee S.
    J Neurophysiol; 1996 Jul 13; 76(1):81-92. PubMed ID: 8836211
    [Abstract] [Full Text] [Related]

  • 29. Rapid recovery and altered neurochemical dependence of locomotor central pattern generation following lumbar neonatal spinal cord injury.
    Züchner M, Kondratskaya E, Sylte CB, Glover JC, Boulland JL.
    J Physiol; 2018 Jan 15; 596(2):281-303. PubMed ID: 29086918
    [Abstract] [Full Text] [Related]

  • 30. Control of locomotor cycle durations.
    Yakovenko S, McCrea DA, Stecina K, Prochazka A.
    J Neurophysiol; 2005 Aug 15; 94(2):1057-65. PubMed ID: 15800075
    [Abstract] [Full Text] [Related]

  • 31. Asymmetric operation of the locomotor central pattern generator in the neonatal mouse spinal cord.
    Endo T, Kiehn O.
    J Neurophysiol; 2008 Dec 15; 100(6):3043-54. PubMed ID: 18829847
    [Abstract] [Full Text] [Related]

  • 32. The locomotor central pattern generator of the rat spinal cord in vitro is optimally activated by noisy dorsal root waveforms.
    Taccola G.
    J Neurophysiol; 2011 Aug 15; 106(2):872-84. PubMed ID: 21613591
    [Abstract] [Full Text] [Related]

  • 33. Pattern generation in caudal-lumbar and sacrococcygeal segments of the neonatal rat spinal cord.
    Gabbay H, Delvolvé I, Lev-Tov A.
    J Neurophysiol; 2002 Aug 15; 88(2):732-9. PubMed ID: 12163525
    [Abstract] [Full Text] [Related]

  • 34. Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation.
    Rybak IA, Stecina K, Shevtsova NA, McCrea DA.
    J Physiol; 2006 Dec 01; 577(Pt 2):641-58. PubMed ID: 17008375
    [Abstract] [Full Text] [Related]

  • 35. Identification of minimal neuronal networks involved in flexor-extensor alternation in the mammalian spinal cord.
    Talpalar AE, Endo T, Löw P, Borgius L, Hägglund M, Dougherty KJ, Ryge J, Hnasko TS, Kiehn O.
    Neuron; 2011 Sep 22; 71(6):1071-84. PubMed ID: 21943604
    [Abstract] [Full Text] [Related]

  • 36. The excitability of lumbar motoneurones in the neonatal rat is increased by a hyperpolarization of their voltage threshold for activation by descending serotonergic fibres.
    Gilmore J, Fedirchuk B.
    J Physiol; 2004 Jul 01; 558(Pt 1):213-24. PubMed ID: 15121804
    [Abstract] [Full Text] [Related]

  • 37. Fictive motor patterns in chronic spinal cats.
    Pearson KG, Rossignol S.
    J Neurophysiol; 1991 Dec 01; 66(6):1874-87. PubMed ID: 1812222
    [Abstract] [Full Text] [Related]

  • 38. Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator.
    Lafreniere-Roula M, McCrea DA.
    J Neurophysiol; 2005 Aug 01; 94(2):1120-32. PubMed ID: 15872066
    [Abstract] [Full Text] [Related]

  • 39. Serotonin controls initiation of locomotion and afferent modulation of coordination via 5-HT7 receptors in adult rats.
    Cabaj AM, Majczyński H, Couto E, Gardiner PF, Stecina K, Sławińska U, Jordan LM.
    J Physiol; 2017 Jan 01; 595(1):301-320. PubMed ID: 27393215
    [Abstract] [Full Text] [Related]

  • 40. Evidence for specialized rhythm-generating mechanisms in the adult mammalian spinal cord.
    Frigon A, Gossard JP.
    J Neurosci; 2010 May 19; 30(20):7061-71. PubMed ID: 20484648
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 64.