These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


365 related items for PubMed ID: 17570444

  • 1. Excitotoxicity in vitro by NR2A- and NR2B-containing NMDA receptors.
    von Engelhardt J, Coserea I, Pawlak V, Fuchs EC, Köhr G, Seeburg PH, Monyer H.
    Neuropharmacology; 2007 Jul; 53(1):10-7. PubMed ID: 17570444
    [Abstract] [Full Text] [Related]

  • 2. Role of the NR2A/2B subunits of the N-methyl-D-aspartate receptor in glutamate-induced glutamic acid decarboxylase alteration in cortical GABAergic neurons in vitro.
    Monnerie H, Hsu FC, Coulter DA, Le Roux PD.
    Neuroscience; 2010 Dec 29; 171(4):1075-90. PubMed ID: 20923697
    [Abstract] [Full Text] [Related]

  • 3. The novel NMDA receptor antagonist, 2-hydroxy-5-(2,3,5,6-tetrafluoro-4-trifluoromethyl-benzylamino)-benzoic acid, is a gating modifier in cultured mouse cortical neurons.
    Noh J, Lee ES, Chung JM.
    J Neurochem; 2009 Jun 29; 109(5):1261-71. PubMed ID: 19302475
    [Abstract] [Full Text] [Related]

  • 4. Differential roles of NR2A and NR2B subtypes in NMDA receptor-dependent protein synthesis in dendrites.
    Tran DH, Gong R, Tang SJ.
    Neuropharmacology; 2007 Aug 29; 53(2):252-6. PubMed ID: 17585958
    [Abstract] [Full Text] [Related]

  • 5. Knockdown of the aryl hydrocarbon receptor attenuates excitotoxicity and enhances NMDA-induced BDNF expression in cortical neurons.
    Lin CH, Chen CC, Chou CM, Wang CY, Hung CC, Chen JY, Chang HW, Chen YC, Yeh GC, Lee YH.
    J Neurochem; 2009 Nov 29; 111(3):777-89. PubMed ID: 19712055
    [Abstract] [Full Text] [Related]

  • 6. Long-lasting NMDA receptor-mediated EPSCs in mouse striatal medium spiny neurons.
    Logan SM, Partridge JG, Matta JA, Buonanno A, Vicini S.
    J Neurophysiol; 2007 Nov 29; 98(5):2693-704. PubMed ID: 17804581
    [Abstract] [Full Text] [Related]

  • 7. Nickel differentially affects NMDA receptor channels in developing cultured rat neurons.
    Gavazzo P, Mazzolini M, Tedesco M, Marchetti C.
    Brain Res; 2006 Mar 17; 1078(1):71-9. PubMed ID: 16494855
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory.
    Zhao MG, Toyoda H, Lee YS, Wu LJ, Ko SW, Zhang XH, Jia Y, Shum F, Xu H, Li BM, Kaang BK, Zhuo M.
    Neuron; 2005 Sep 15; 47(6):859-72. PubMed ID: 16157280
    [Abstract] [Full Text] [Related]

  • 10. In vivo treatment with the K+ channel blocker 4-aminopyridine protects against kainate-induced neuronal cell death through activation of NMDA receptors in murine hippocampus.
    Ogita K, Okuda H, Watanabe M, Nagashima R, Sugiyama C, Yoneda Y.
    Neuropharmacology; 2005 May 15; 48(6):810-21. PubMed ID: 15829253
    [Abstract] [Full Text] [Related]

  • 11. Roles of NMDA receptor NR2A and NR2B subtypes for long-term depression in the anterior cingulate cortex.
    Toyoda H, Zhao MG, Zhuo M.
    Eur J Neurosci; 2005 Jul 15; 22(2):485-94. PubMed ID: 16045501
    [Abstract] [Full Text] [Related]

  • 12. NMDA receptor subtypes at autaptic synapses of cerebellar granule neurons.
    Lu C, Fu Z, Karavanov I, Yasuda RP, Wolfe BB, Buonanno A, Vicini S.
    J Neurophysiol; 2006 Nov 15; 96(5):2282-94. PubMed ID: 16885526
    [Abstract] [Full Text] [Related]

  • 13. Changes in secondary glutamate release underlie the developmental regulation of excitotoxic neuronal cell death.
    Fogal B, Trettel J, Uliasz TF, Levine ES, Hewett SJ.
    Neuroscience; 2005 Nov 15; 132(4):929-42. PubMed ID: 15857699
    [Abstract] [Full Text] [Related]

  • 14. The role of NMDAR subtypes and charge transfer during hippocampal LTP induction.
    Berberich S, Jensen V, Hvalby Ø, Seeburg PH, Köhr G.
    Neuropharmacology; 2007 Jan 15; 52(1):77-86. PubMed ID: 16901514
    [Abstract] [Full Text] [Related]

  • 15. Ischemia-induced interleukin-6 as a potential endogenous neuroprotective cytokine against NMDA receptor-mediated excitotoxicity in the brain.
    Ali C, Nicole O, Docagne F, Lesne S, MacKenzie ET, Nouvelot A, Buisson A, Vivien D.
    J Cereb Blood Flow Metab; 2000 Jun 15; 20(6):956-66. PubMed ID: 10894179
    [Abstract] [Full Text] [Related]

  • 16. Functional in vitro characterization of CR 3394: a novel voltage dependent N-methyl-D-aspartate (NMDA) receptor antagonist.
    Losi G, Lanza M, Makovec F, Artusi R, Caselli G, Puia G.
    Neuropharmacology; 2006 Mar 15; 50(3):277-85. PubMed ID: 16236334
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Role of NMDA receptor subtypes in different forms of NMDA-dependent synaptic plasticity.
    Li R, Huang FS, Abbas AK, Wigström H.
    BMC Neurosci; 2007 Jul 26; 8():55. PubMed ID: 17655746
    [Abstract] [Full Text] [Related]

  • 19. N-methyl-D-aspartate-evoked adenosine and inosine release from neurons requires extracellular calcium.
    Zamzow CR, Bose R, Parkinson FE.
    Can J Physiol Pharmacol; 2009 Oct 26; 87(10):850-8. PubMed ID: 20052011
    [Abstract] [Full Text] [Related]

  • 20. Transient potassium conductances protect nucleus tractus solitarius neurons from NMDA induced excitotoxic plateau depolarizations.
    Yang B, Leveck DE, Ferguson AV.
    Brain Res; 2005 Sep 14; 1056(1):1-9. PubMed ID: 16122718
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.