These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


934 related items for PubMed ID: 17573109

  • 1. Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly[(R)-3-hydroxybutyrate], poly(ethylene glycol), and poly(propylene glycol).
    Loh XJ, Goh SH, Li J.
    Biomaterials; 2007 Oct; 28(28):4113-23. PubMed ID: 17573109
    [Abstract] [Full Text] [Related]

  • 2. The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol).
    Loh XJ, Tan KK, Li X, Li J.
    Biomaterials; 2006 Mar; 27(9):1841-50. PubMed ID: 16305807
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. New biodegradable thermogelling copolymers having very low gelation concentrations.
    Loh XJ, Goh SH, Li J.
    Biomacromolecules; 2007 Feb; 8(2):585-93. PubMed ID: 17291082
    [Abstract] [Full Text] [Related]

  • 5. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization.
    Li Z, Yang X, Wu L, Chen Z, Lin Y, Xu K, Chen GQ.
    J Biomater Sci Polym Ed; 2009 Feb; 20(9):1179-202. PubMed ID: 19520007
    [Abstract] [Full Text] [Related]

  • 6. Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study.
    Li X, Loh XJ, Wang K, He C, Li J.
    Biomacromolecules; 2005 Feb; 6(5):2740-7. PubMed ID: 16153114
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Effect of hydrophilicity and agmatine modification on degradation of poly(propylene fumarate-co-ethylene glycol) hydrogels.
    Tanahashi K, Mikos AG.
    J Biomed Mater Res A; 2003 Dec 15; 67(4):1148-54. PubMed ID: 14624500
    [Abstract] [Full Text] [Related]

  • 9. Biodegradable thermogelling poly(ester urethane)s consisting of poly(lactic acid)--thermodynamics of micellization and hydrolytic degradation.
    Loh XJ, Tan YX, Li Z, Teo LS, Goh SH, Li J.
    Biomaterials; 2008 May 15; 29(14):2164-72. PubMed ID: 18276002
    [Abstract] [Full Text] [Related]

  • 10. Synthesis, characterizations and biocompatibility of alternating block polyurethanes based on P3/4HB and PPG-PEG-PPG.
    Li G, Li P, Qiu H, Li D, Su M, Xu K.
    J Biomed Mater Res A; 2011 Jul 15; 98(1):88-99. PubMed ID: 21538829
    [Abstract] [Full Text] [Related]

  • 11. Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(epsilon-caprolactone), poly(ethylene glycol) and poly(propylene glycol).
    Loh XJ, Colin Sng KB, Li J.
    Biomaterials; 2008 Aug 15; 29(22):3185-94. PubMed ID: 18456319
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Poly(glutamic acid) poly(ethylene glycol) hydrogels prepared by photoinduced polymerization: Synthesis, characterization, and preliminary release studies of protein drugs.
    Yang Z, Zhang Y, Markland P, Yang VC.
    J Biomed Mater Res; 2002 Oct 15; 62(1):14-21. PubMed ID: 12124782
    [Abstract] [Full Text] [Related]

  • 14. New Linear and Star-Shaped Thermogelling Poly([R]-3-hydroxybutyrate) Copolymers.
    Barouti G, Liow SS, Dou Q, Ye H, Orione C, Guillaume SM, Loh XJ.
    Chemistry; 2016 Jul 18; 22(30):10501-12. PubMed ID: 27345491
    [Abstract] [Full Text] [Related]

  • 15. Biodegradable and thermoreversible hydrogels of poly(ethylene glycol)-poly(epsilon-caprolactone-co-glycolide)-poly(ethylene glycol) aqueous solutions.
    Jiang Z, Hao J, You Y, Liu Y, Wang Z, Deng X.
    J Biomed Mater Res A; 2008 Oct 18; 87(1):45-51. PubMed ID: 18080306
    [Abstract] [Full Text] [Related]

  • 16. Synthesis, characterization, and morphology studies of biodegradable amphiphilic poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene glycol) multiblock copolymers.
    Li X, Liu KL, Li J, Tan EP, Chan LM, Lim CT, Goh SH.
    Biomacromolecules; 2006 Nov 18; 7(11):3112-9. PubMed ID: 17096539
    [Abstract] [Full Text] [Related]

  • 17. Block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxyhexanoate-co-3-hydroxyoctanoate).
    Chen Z, Cheng S, Xu K.
    Biomaterials; 2009 Apr 18; 30(12):2219-30. PubMed ID: 19167751
    [Abstract] [Full Text] [Related]

  • 18. Synthesis, characterization, and hydrolytic degradation behavior of a novel biodegradable pH-sensitive hydrogel based on polycaprolactone, methacrylic acid, and poly(ethylene glycol).
    Chao GT, Qian ZY, Huang MJ, Kan B, Gu YC, Gong CY, Yang JL, Wang K, Dai M, Li XY, Gou ML, Tu MJ, Wei YQ.
    J Biomed Mater Res A; 2008 Apr 18; 85(1):36-46. PubMed ID: 17688254
    [Abstract] [Full Text] [Related]

  • 19. Characterization, biodegradability and blood compatibility of poly[(R)-3-hydroxybutyrate] based poly(ester-urethane)s.
    Liu Q, Cheng S, Li Z, Xu K, Chen GQ.
    J Biomed Mater Res A; 2009 Sep 15; 90(4):1162-76. PubMed ID: 18671259
    [Abstract] [Full Text] [Related]

  • 20. Drug release from and hydrolytic degradation of a poly(ethylene glycol) grafted poly(3-hydroxyoctanoate).
    Kim HW, Chung CW, Hwang SJ, Rhee YH.
    Int J Biol Macromol; 2005 Jul 15; 36(1-2):84-9. PubMed ID: 15936069
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 47.