These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


166 related items for PubMed ID: 17591203

  • 1. Relative performance of duckweed ponds and rock filtration as advanced in-pond wastewater treatment processes for upgrading waste stabilisation pond effluent: a pilot study.
    Short MD, Cromar NJ, Nixon JB, Fallowfield HJ.
    Water Sci Technol; 2007; 55(11):111-9. PubMed ID: 17591203
    [Abstract] [Full Text] [Related]

  • 2. Dairy farm wastewater treatment by an advanced pond system.
    Craggs RJ, Tanner CC, Sukias JP, Davies-Colley RJ.
    Water Sci Technol; 2003; 48(2):291-7. PubMed ID: 14510223
    [Abstract] [Full Text] [Related]

  • 3. The effect of aeration and effluent recycling on domestic wastewater treatment in a pilot-plant system of duckweed ponds.
    Ben-shalom M, Shandalov S, Brenner A, Oron G.
    Water Sci Technol; 2014; 69(2):350-7. PubMed ID: 24473305
    [Abstract] [Full Text] [Related]

  • 4. Nitrogen removal in recirculated duckweed ponds system.
    Benjawan L, Koottatep T.
    Water Sci Technol; 2007; 55(11):103-10. PubMed ID: 17591202
    [Abstract] [Full Text] [Related]

  • 5. Comparative performance studies of water lettuce, duckweed, and algal-based stabilization ponds using low-strength sewage.
    Awuah E, Oppong-Peprah M, Lubberding HJ, Gijzen HJ.
    J Toxicol Environ Health A; 2007; 67(20-22):1727-39. PubMed ID: 15371212
    [Abstract] [Full Text] [Related]

  • 6. Performance of an intensive pond system treating municipal wastewater in a cold region.
    Wang B, Qi P, Wang L, Lu W, Liu S, Zhao F.
    Water Sci Technol; 2005; 51(12):51-60. PubMed ID: 16114663
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. A pilot study of constructed wetlands using duckweed (Lemna gibba L.) for treatment of domestic primary effluent in Israel.
    Ran N, Agami M, Oron G.
    Water Res; 2004 May; 38(9):2240-7. PubMed ID: 15142784
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Process performance assessment of algae-based and duckweed-based wastewater treatment systems.
    Zimmo OR, Al-Sa'ed RM, van der Steen NP, Gijzen HJ.
    Water Sci Technol; 2002 May; 45(1):91-101. PubMed ID: 11841059
    [Abstract] [Full Text] [Related]

  • 13. Analysis of nitrogenous and algal oxygen demand in effluent from a system of aerated lagoons followed by polishing pond.
    Khorsandi H, Alizadeh R, Tosinejad H, Porghaffar H.
    Water Sci Technol; 2014 May; 70(1):95-101. PubMed ID: 25026585
    [Abstract] [Full Text] [Related]

  • 14. Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems.
    Shi W, Wang L, Rousseau DP, Lens PN.
    Environ Sci Pollut Res Int; 2010 May; 17(4):824-33. PubMed ID: 20213308
    [Abstract] [Full Text] [Related]

  • 15. Performance of duckweed (Lemna minor L.) on different types of wastewater treatment.
    Ozengin N, Elmaci A.
    J Environ Biol; 2007 Apr; 28(2):307-14. PubMed ID: 17915771
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. The effect of aerated rock filter geometry on the rate of nitrogen removal from facultative pond effluents.
    Hamdan R, Mara DD.
    Water Sci Technol; 2011 Apr; 63(5):841-4. PubMed ID: 21411931
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.