These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1027 related items for PubMed ID: 17602574

  • 1. Characterization of the nitrosyl adduct of substrate-bound mouse cysteine dioxygenase by electron paramagnetic resonance: electronic structure of the active site and mechanistic implications.
    Pierce BS, Gardner JD, Bailey LJ, Brunold TC, Fox BG.
    Biochemistry; 2007 Jul 24; 46(29):8569-78. PubMed ID: 17602574
    [Abstract] [Full Text] [Related]

  • 2. Single turnover of substrate-bound ferric cysteine dioxygenase with superoxide anion: enzymatic reactivation, product formation, and a transient intermediate.
    Crawford JA, Li W, Pierce BS.
    Biochemistry; 2011 Nov 29; 50(47):10241-53. PubMed ID: 21992268
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Spectroscopic and Computational Investigation of the H155A Variant of Cysteine Dioxygenase: Geometric and Electronic Consequences of a Third-Sphere Amino Acid Substitution.
    Blaesi EJ, Fox BG, Brunold TC.
    Biochemistry; 2015 May 12; 54(18):2874-84. PubMed ID: 25897562
    [Abstract] [Full Text] [Related]

  • 5. The "Gln-Type" Thiol Dioxygenase from Azotobacter vinelandii is a 3-Mercaptopropionic Acid Dioxygenase.
    Pierce BS, Subedi BP, Sardar S, Crowell JK.
    Biochemistry; 2015 Dec 29; 54(51):7477-90. PubMed ID: 26624219
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Steady-state substrate specificity and O₂-coupling efficiency of mouse cysteine dioxygenase.
    Li W, Pierce BS.
    Arch Biochem Biophys; 2015 Jan 01; 565():49-56. PubMed ID: 25444857
    [Abstract] [Full Text] [Related]

  • 8. Expression, purification, and kinetic characterization of recombinant rat cysteine dioxygenase, a non-heme metalloenzyme necessary for regulation of cellular cysteine levels.
    Simmons CR, Hirschberger LL, Machi MS, Stipanuk MH.
    Protein Expr Purif; 2006 May 01; 47(1):74-81. PubMed ID: 16325423
    [Abstract] [Full Text] [Related]

  • 9. Addition of an external electron donor to in vitro assays of cysteine dioxygenase precludes the need for exogenous iron.
    Imsand EM, Njeri CW, Ellis HR.
    Arch Biochem Biophys; 2012 May 01; 521(1-2):10-7. PubMed ID: 22433531
    [Abstract] [Full Text] [Related]

  • 10. Why do cysteine dioxygenase enzymes contain a 3-His ligand motif rather than a 2His/1Asp motif like most nonheme dioxygenases?
    de Visser SP, Straganz GD.
    J Phys Chem A; 2009 Mar 05; 113(9):1835-46. PubMed ID: 19199799
    [Abstract] [Full Text] [Related]

  • 11. Second-sphere interactions between the C93-Y157 cross-link and the substrate-bound Fe site influence the O₂ coupling efficiency in mouse cysteine dioxygenase.
    Li W, Blaesi EJ, Pecore MD, Crowell JK, Pierce BS.
    Biochemistry; 2013 Dec 23; 52(51):9104-19. PubMed ID: 24279989
    [Abstract] [Full Text] [Related]

  • 12. Cyanide replaces substrate in obligate-ordered addition of nitric oxide to the non-heme mononuclear iron AvMDO active site.
    York NJ, Lockart MM, Schmittou AN, Pierce BS.
    J Biol Inorg Chem; 2023 Apr 23; 28(3):285-299. PubMed ID: 36809458
    [Abstract] [Full Text] [Related]

  • 13. EPR and UV-vis studies of the nitric oxide adducts of bacterial phenylalanine hydroxylase: effects of cofactor and substrate on the iron environment.
    Han AY, Lee AQ, Abu-Omar MM.
    Inorg Chem; 2006 May 15; 45(10):4277-83. PubMed ID: 16676991
    [Abstract] [Full Text] [Related]

  • 14. Shifting redox states of the iron center partitions CDO between crosslink formation or cysteine oxidation.
    Njeri CW, Ellis HR.
    Arch Biochem Biophys; 2014 Sep 15; 558():61-9. PubMed ID: 24929188
    [Abstract] [Full Text] [Related]

  • 15. Two modes of binding of N-hydroxyguanidines to NO synthases: first evidence for the formation of iron-N-hydroxyguanidine complexes and key role of tetrahydrobiopterin in determining the binding mode.
    Lefèvre-Groboillot D, Frapart Y, Desbois A, Zimmermann JL, Boucher JL, Gorren AC, Mayer B, Stuehr DJ, Mansuy D.
    Biochemistry; 2003 Apr 08; 42(13):3858-67. PubMed ID: 12667076
    [Abstract] [Full Text] [Related]

  • 16. Synthesis, X-ray Structures, Electronic Properties, and O2/NO Reactivities of Thiol Dioxygenase Active-Site Models.
    Fischer AA, Stracey N, Lindeman SV, Brunold TC, Fiedler AT.
    Inorg Chem; 2016 Nov 21; 55(22):11839-11853. PubMed ID: 27801576
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Spectroscopic and computational characterization of the NO adduct of substrate-bound Fe(II) cysteine dioxygenase: insights into the mechanism of O2 activation.
    Blaesi EJ, Gardner JD, Fox BG, Brunold TC.
    Biochemistry; 2013 Sep 03; 52(35):6040-51. PubMed ID: 23906193
    [Abstract] [Full Text] [Related]

  • 19. Electronic structure and FeNO conformation of nonheme iron-thiolate-NO complexes: an experimental and DFT study.
    Conradie J, Quarless DA, Hsu HF, Harrop TC, Lippard SJ, Koch SA, Ghosh A.
    J Am Chem Soc; 2007 Aug 29; 129(34):10446-56. PubMed ID: 17685516
    [Abstract] [Full Text] [Related]

  • 20. The mechanism of cysteine oxygenation by cysteine dioxygenase enzymes.
    Aluri S, de Visser SP.
    J Am Chem Soc; 2007 Dec 05; 129(48):14846-7. PubMed ID: 17994747
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 52.