These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


191 related items for PubMed ID: 17604612

  • 1. Influence of mineral amendment on disease suppressive activity of Pseudomonas fluorescens to Fusarium wilt of chickpea.
    Saikia R, Varghese S, Singh BP, Arora DK.
    Microbiol Res; 2009; 164(4):365-73. PubMed ID: 17604612
    [Abstract] [Full Text] [Related]

  • 2. Role of salicylic acid in systemic resistance induced by Pseudomonas fluorescens against Fusarium oxysporum f. sp. ciceri in chickpea.
    Saikia R, Singh T, Kumar R, Srivastava J, Srivastava AK, Singh K, Arora DK.
    Microbiol Res; 2003; 158(3):203-13. PubMed ID: 14521230
    [Abstract] [Full Text] [Related]

  • 3. Defense responses of Fusarium oxysporum to 2,4-diacetylphloroglucinol, a broad-spectrum antibiotic produced by Pseudomonas fluorescens.
    Schouten A, van den Berg G, Edel-Hermann V, Steinberg C, Gautheron N, Alabouvette C, de Vos CH, Lemanceau P, Raaijmakers JM.
    Mol Plant Microbe Interact; 2004 Nov; 17(11):1201-11. PubMed ID: 15559985
    [Abstract] [Full Text] [Related]

  • 4. Zinc Improves Biocontrol of Fusarium Crown and Root Rot of Tomato by Pseudomonas fluorescens and Represses the Production of Pathogen Metabolites Inhibitory to Bacterial Antibiotic Biosynthesis.
    Duffy BK, Défago G.
    Phytopathology; 1997 Dec; 87(12):1250-7. PubMed ID: 18945026
    [Abstract] [Full Text] [Related]

  • 5. Effect of genotype and root colonization in biological control of fusarium wilts in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1.
    Anjaiah V, Cornelis P, Koedam N.
    Can J Microbiol; 2003 Feb; 49(2):85-91. PubMed ID: 12718396
    [Abstract] [Full Text] [Related]

  • 6. Fusaric acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat.
    Notz R, Maurhofer M, Dubach H, Haas D, Défago G.
    Appl Environ Microbiol; 2002 May; 68(5):2229-35. PubMed ID: 11976092
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Cu(II): a "signaling molecule" of the mangrove endophyte Fusarium oxysporum ZZF51?
    Pan JH, Lin YC, Tan N, Gu YC.
    Biometals; 2010 Dec; 23(6):1053-60. PubMed ID: 20526798
    [Abstract] [Full Text] [Related]

  • 9. Phloroglucinol mediates cross-talk between the pyoluteorin and 2,4-diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf-5.
    Kidarsa TA, Goebel NC, Zabriskie TM, Loper JE.
    Mol Microbiol; 2011 Jul; 81(2):395-414. PubMed ID: 21564338
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. In planta and soil quantification of Fusarium oxysporum f. sp. ciceris and evaluation of Fusarium wilt resistance in chickpea with a newly developed quantitative polymerase chain reaction assay.
    Jiménez-Fernández D, Montes-Borrego M, Jiménez-Díaz RM, Navas-Cortés JA, Landa BB.
    Phytopathology; 2011 Feb; 101(2):250-62. PubMed ID: 21219129
    [Abstract] [Full Text] [Related]

  • 14. Temporal and spatial changes in phenolic compounds in response to Fusarium wilt in chickpea and pigeonpea.
    Datta J, Lal N.
    Cell Mol Biol (Noisy-le-grand); 2012 Dec 22; 58(1):96-102. PubMed ID: 23273197
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. A molecular insight into the early events of chickpea (Cicer arietinum) and Fusarium oxysporum f. sp. ciceri (race 1) interaction through cDNA-AFLP analysis.
    Gupta S, Chakraborti D, Rangi RK, Basu D, Das S.
    Phytopathology; 2009 Nov 22; 99(11):1245-57. PubMed ID: 19821728
    [Abstract] [Full Text] [Related]

  • 17. Zinc and Copper Enhance Cucumber Tolerance to Fusaric Acid by Mediating Its Distribution and Toxicity and Modifying the Antioxidant System.
    Wang R, Huang J, Liang A, Wang Y, Mur LAJ, Wang M, Guo S.
    Int J Mol Sci; 2020 May 10; 21(9):. PubMed ID: 32397623
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Use of green fluorescent protein-based reporters to monitor balanced production of antifungal compounds in the biocontrol agent Pseudomonas fluorescens CHA0.
    Baehler E, Bottiglieri M, Péchy-Tarr M, Maurhofer M, Keel C.
    J Appl Microbiol; 2005 May 10; 99(1):24-38. PubMed ID: 15960662
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.