These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
614 related items for PubMed ID: 17605652
1. Role of red blood cell flow behavior in hemodynamics and hemostasis. Barshtein G, Ben-Ami R, Yedgar S. Expert Rev Cardiovasc Ther; 2007 Jul; 5(4):743-52. PubMed ID: 17605652 [Abstract] [Full Text] [Related]
2. Effect of normal human erythrocytes on blood rheology in microcirculation. Hirata C, Kobayashi H, Mizuno N, Kutsuna H, Ishina K, Ishii M. Osaka City Med J; 2007 Dec; 53(2):73-85. PubMed ID: 18432063 [Abstract] [Full Text] [Related]
3. Microrheology of erythrocytes, blood viscosity, and the distribution of blood flow in the microcirculation. Schmid-Schönbein H. Int Rev Physiol; 1976 Dec; 9():1-62. PubMed ID: 977248 [Abstract] [Full Text] [Related]
10. Effects of fibrinogen and alpha2-macroglobulin and their apheretic elimination on general blood rheology and rheological characteristics of red blood cell aggregates. Kirschkamp T, Schmid-Schönbein H, Weinberger A, Smeets R. Ther Apher Dial; 2008 Oct; 12(5):360-7. PubMed ID: 18937718 [Abstract] [Full Text] [Related]
12. Blood banking-induced alteration of red blood cell flow properties. Relevy H, Koshkaryev A, Manny N, Yedgar S, Barshtein G. Transfusion; 2008 Jan; 48(1):136-46. PubMed ID: 17900281 [Abstract] [Full Text] [Related]
13. Radial dispersion of red blood cells in blood flowing through glass capillaries: the role of hematocrit and geometry. Lima R, Ishikawa T, Imai Y, Takeda M, Wada S, Yamaguchi T. J Biomech; 2008 Jul 19; 41(10):2188-96. PubMed ID: 18589429 [Abstract] [Full Text] [Related]
14. Effect of red blood cells and their aggregates on platelets and white cells in flowing blood. Goldsmith HL, Bell DN, Spain S, McIntosh FA. Biorheology; 1999 Jul 19; 36(5-6):461-8. PubMed ID: 10818647 [No Abstract] [Full Text] [Related]
15. Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma. Faivre M, Abkarian M, Bickraj K, Stone HA. Biorheology; 2006 Jul 19; 43(2):147-59. PubMed ID: 16687784 [Abstract] [Full Text] [Related]
16. The role of fluid dynamics in triggering and amplifying hemostatic reactions in thrombogenesis. Wurzinger LJ, Schmid-Schönbein H. Monogr Atheroscler; 1990 Jul 19; 15():215-26. PubMed ID: 2296244 [No Abstract] [Full Text] [Related]
17. Rheology in the microcirculation in normal and low flow states. Chien S. Adv Shock Res; 1982 Jul 19; 8():71-80. PubMed ID: 7136948 [Abstract] [Full Text] [Related]
19. Fast response characteristics of red blood cell aggregation. Kaliviotis E, Yianneskis M. Biorheology; 2008 Jul 19; 45(6):639-49. PubMed ID: 19065011 [Abstract] [Full Text] [Related]
20. Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation. Mchedlishvili G. Clin Hemorheol Microcirc; 1998 Dec 19; 19(4):315-25. PubMed ID: 9972669 [Abstract] [Full Text] [Related] Page: [Next] [New Search]