These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
592 related items for PubMed ID: 17612716
1. Structure and nuclearity of active sites in Fe-zeolites: comparison with iron sites in enzymes and homogeneous catalysts. Zecchina A, Rivallan M, Berlier G, Lamberti C, Ricchiardi G. Phys Chem Chem Phys; 2007 Jul 21; 9(27):3483-99. PubMed ID: 17612716 [Abstract] [Full Text] [Related]
2. Comparison between the geometric and electronic structures and reactivities of [FeNO]7 and [FeO2]8 complexes: a density functional theory study. Schenk G, Pau MY, Solomon EI. J Am Chem Soc; 2004 Jan 21; 126(2):505-15. PubMed ID: 14719948 [Abstract] [Full Text] [Related]
3. Is [FeO](2+) the active center also in iron containing zeolites? A density functional theory study of methane hydroxylation catalysis by Fe-ZSM-5 zeolite. Rosa A, Ricciardi G, Jan Baerends E. Inorg Chem; 2010 Apr 19; 49(8):3866-80. PubMed ID: 20302356 [Abstract] [Full Text] [Related]
4. Decolorization of KN-R catalyzed by Fe-containing Y and ZSM-5 zeolites. Chen A, Ma X, Sun H. J Hazard Mater; 2008 Aug 15; 156(1-3):568-75. PubMed ID: 18243544 [Abstract] [Full Text] [Related]
5. Mechanism and kinetics of direct N2O decomposition over Fe-MFI zeolites with different iron speciation from temporal analysis of products. Kondratenko EV, Pérez-Ramírez J. J Phys Chem B; 2006 Nov 16; 110(45):22586-95. PubMed ID: 17092005 [Abstract] [Full Text] [Related]
7. Enhancement of alpha-oxygen formation and N2O decomposition on Fe/ZSM-5 catalysts by extraframework Al. Sun K, Zhang H, Xia H, Lian Y, Li Y, Feng Z, Ying P, Li C. Chem Commun (Camb); 2004 Nov 07; (21):2480-1. PubMed ID: 15514825 [Abstract] [Full Text] [Related]
8. Iron(III) complexes of certain meridionally coordinating tridentate ligands as models for non-heme iron enzymes: the role of carboxylate coordination. Dhanalakshmi T, Bhuvaneshwari M, Palaniandavar M. J Inorg Biochem; 2006 Sep 07; 100(9):1527-34. PubMed ID: 16814389 [Abstract] [Full Text] [Related]
9. Generation of ferryl species through dioxygen activation in iron/EDTA systems: a computational study. Bernasconi L, Baerends EJ. Inorg Chem; 2009 Jan 19; 48(2):527-40. PubMed ID: 19072703 [Abstract] [Full Text] [Related]
10. Electrochemical studies of the mono-Fe, Fe-Zn, and Fe-Fe metalloisoforms of bacteriophage lambda protein phosphatase. Reiter TA, Rusnak F. Biochemistry; 2004 Jan 27; 43(3):782-90. PubMed ID: 14730983 [Abstract] [Full Text] [Related]
11. Unravelling the intrinsic features of NO binding to iron(II)- and iron(III)-hemes. Chiavarino B, Crestoni ME, Fornarini S, Rovira C. Inorg Chem; 2008 Sep 01; 47(17):7792-801. PubMed ID: 18681420 [Abstract] [Full Text] [Related]
12. Arg97 at the heme-distal side of the isolated heme-bound PAS domain of a heme-based oxygen sensor from Escherichia coli (Ec DOS) plays critical roles in autoxidation and binding to gases, particularly O2. Ishitsuka Y, Araki Y, Tanaka A, Igarashi J, Ito O, Shimizu T. Biochemistry; 2008 Aug 26; 47(34):8874-84. PubMed ID: 18672892 [Abstract] [Full Text] [Related]
13. Fe(3+)-eta(2)-peroxo species in superoxide reductase from Treponema pallidum. Comparison with Desulfoarculus baarsii. Mathé C, Nivière V, Houée-Levin C, Mattioli TA. Biophys Chem; 2006 Jan 01; 119(1):38-48. PubMed ID: 16084640 [Abstract] [Full Text] [Related]
14. Active sites, deactivation and stabilization of Fe-ZSM-5 for the selective catalytic reduction (SCR) of NO with NH(3). Kröcher O, Brandenberger S. Chimia (Aarau); 2012 Jan 01; 66(9):687-93. PubMed ID: 23211727 [Abstract] [Full Text] [Related]
15. Behavior of extraframework Fe sites in MFI and MCM-22 zeolites upon interaction with N2O and NO. Berlier G, Prestipino C, Rivallan M, Bordiga S, Lamberti C, Zecchina A. J Phys Chem B; 2005 Dec 01; 109(47):22377-85. PubMed ID: 16853915 [Abstract] [Full Text] [Related]
16. Nitrosyl-heme structures of Bacillus subtilis nitric oxide synthase have implications for understanding substrate oxidation. Pant K, Crane BR. Biochemistry; 2006 Feb 28; 45(8):2537-44. PubMed ID: 16489746 [Abstract] [Full Text] [Related]
17. Properties of iron-based mesoporous silica for the CWPO of phenol: a comparison between impregnation and co-condensation routes. Xiang L, Royer S, Zhang H, Tatibouët JM, Barrault J, Valange S. J Hazard Mater; 2009 Dec 30; 172(2-3):1175-84. PubMed ID: 19709804 [Abstract] [Full Text] [Related]
18. Evaluation of electron-withdrawing group effects on heme binding in designed proteins: implications for heme a in cytochrome c oxidase. Zhuang J, Amoroso JH, Kinloch R, Dawson JH, Baldwin MJ, Gibney BR. Inorg Chem; 2006 Jun 12; 45(12):4685-94. PubMed ID: 16749832 [Abstract] [Full Text] [Related]
19. Iron(II) complexes with bio-inspired N,N,O ligands as oxidation catalysts: olefin epoxidation and cis-dihydroxylation. Bruijnincx PC, Buurmans IL, Gosiewska S, Moelands MA, Lutz M, Spek AL, van Koten G, Klein Gebbink RJ. Chemistry; 2008 Jun 12; 14(4):1228-37. PubMed ID: 18022966 [Abstract] [Full Text] [Related]
20. The crystal chemistry of ferric oxyhydroxyapatite. Low HR, Phonthammachai N, Maignan A, Stewart GA, Bastow TJ, Ma LL, White TJ. Inorg Chem; 2008 Dec 15; 47(24):11774-82. PubMed ID: 19007209 [Abstract] [Full Text] [Related] Page: [Next] [New Search]