These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


80 related items for PubMed ID: 17614103

  • 41. Functional repair of motor endplates after botulinum neurotoxin type A poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals.
    de Paiva A, Meunier FA, Molgó J, Aoki KR, Dolly JO.
    Proc Natl Acad Sci U S A; 1999 Mar 16; 96(6):3200-5. PubMed ID: 10077661
    [Abstract] [Full Text] [Related]

  • 42. The relationship between ciliary neurotrophic factor (CNTF) genotype and motor unit physiology: preliminary studies.
    Conwit RA, Ling S, Roth S, Stashuk D, Hurley B, Ferrell R, Metter EJ.
    BMC Physiol; 2005 Sep 23; 5():15. PubMed ID: 16181490
    [Abstract] [Full Text] [Related]

  • 43. Ciliary neurotrophic factor may act in target musculature to regulate developmental synapse elimination.
    Jordan CL.
    Dev Neurosci; 1996 Sep 23; 18(3):185-98. PubMed ID: 8894447
    [Abstract] [Full Text] [Related]

  • 44. The role of botulinum toxin type a-induced motor endplates after peripheral nerve repair.
    Akdeniz ZD, Bayramiçli M, Ateş F, Özkan N, Yucesoy CA, Ercan F.
    Muscle Nerve; 2015 Sep 23; 52(3):412-8. PubMed ID: 25640922
    [Abstract] [Full Text] [Related]

  • 45. Morphological and electrophysiological study of distal motor nerve fiber degeneration and sprouting after irreversible cholinesterase inhibition.
    Kawabuchi M, Cintra WM, Deshpande SS, Albuquerque EX.
    Synapse; 1991 Jul 23; 8(3):218-28. PubMed ID: 1948671
    [Abstract] [Full Text] [Related]

  • 46. Ciliary neurotrophic factor arrests muscle and motoneuron degeneration in androgen-insensitive rats.
    Forger NG, Wong V, Breedlove SM.
    J Neurobiol; 1995 Nov 23; 28(3):354-62. PubMed ID: 8568516
    [Abstract] [Full Text] [Related]

  • 47. Further characterization of the effects of brain-derived neurotrophic factor and ciliary neurotrophic factor on axotomized neonatal and adult mammalian motor neurons.
    Clatterbuck RE, Price DL, Koliatsos VE.
    J Comp Neurol; 1994 Apr 01; 342(1):45-56. PubMed ID: 7515907
    [Abstract] [Full Text] [Related]

  • 48. Longitudinal neurophysiological assessment of intramuscular type-A botulin toxin in healthy humans.
    Lispi L, Leonardi L, Petrucci A.
    Neurol Sci; 2018 Feb 01; 39(2):329-332. PubMed ID: 29128986
    [Abstract] [Full Text] [Related]

  • 49. Histometric effects of ciliary neurotrophic factor in wobbler mouse motor neuron disease.
    Ikeda K, Wong V, Holmlund TH, Greene T, Cedarbaum JM, Lindsay RM, Mitsumoto H.
    Ann Neurol; 1995 Jan 01; 37(1):47-54. PubMed ID: 7818257
    [Abstract] [Full Text] [Related]

  • 50. [Ultrastructural analysis of mouse levator auris longus muscle intoxicated in vivo by botulinum neurotoxin type A].
    Velasco E, Gledhill T, Linares C, Roschman-González A.
    Invest Clin; 2008 Dec 01; 49(4):469-86. PubMed ID: 19245166
    [Abstract] [Full Text] [Related]

  • 51. Suppression of terminal axonal sprouting at the neuromuscular junction by monoclonal antibodies against a muscle-derived antigen of 56,000 daltons.
    Gurney ME, Apatoff BR, Heinrich SP.
    J Cell Biol; 1986 Jun 01; 102(6):2264-72. PubMed ID: 3486871
    [Abstract] [Full Text] [Related]

  • 52. Terminal sprouting of mouse motor nerves when the post-synaptic membrane degenerates.
    Huang CL, Keynes RJ.
    Brain Res; 1983 Sep 12; 274(2):225-9. PubMed ID: 6626951
    [Abstract] [Full Text] [Related]

  • 53. Botulinum toxin has an increased effect when targeted toward the muscle's endplate zone: a high-density surface EMG guided study.
    Lapatki BG, van Dijk JP, van de Warrenburg BP, Zwarts MJ.
    Clin Neurophysiol; 2011 Aug 12; 122(8):1611-6. PubMed ID: 21195024
    [Abstract] [Full Text] [Related]

  • 54. Suppression of sprouting at the neuromuscular junction by immune sera.
    Gurney ME.
    Nature; 2011 Aug 12; 307(5951):546-8. PubMed ID: 6694745
    [Abstract] [Full Text] [Related]

  • 55. Spinal irradiation does not inhibit distal axonal sprouting.
    Pamphlett RS.
    Muscle Nerve; 1988 May 12; 11(5):493-501. PubMed ID: 3374520
    [Abstract] [Full Text] [Related]

  • 56. Improved functional recovery after facial nerve reconstruction by temporary denervation of the contralateral mimic musculature with botulinum toxin in rats.
    Guntinas-Lichius O, Glowka TR, Angelov DN, Irintchev A, Neiss WF.
    Neurorehabil Neural Repair; 2011 Jan 12; 25(1):15-23. PubMed ID: 20930211
    [Abstract] [Full Text] [Related]

  • 57. Ciliary neurotrophic factor as a motor neuron trophic factor.
    Kuzis K, Eckenstein FP.
    Perspect Dev Neurobiol; 1996 Jan 12; 4(1):65-74. PubMed ID: 9169920
    [Abstract] [Full Text] [Related]

  • 58. Neuromuscular relationships in a muscle having segregated motor endplate zones. II. The response to partial denervation.
    Wines MM, Hall-Craggs EC.
    J Comp Neurol; 1986 Jul 08; 249(2):152-6. PubMed ID: 3734156
    [Abstract] [Full Text] [Related]

  • 59. Treadmill running upregulates the expression of acetylcholine receptor in rat gastrocnemius following botulinum toxin A injection.
    Tsai SW, Tung YT, Chen HL, Shen CJ, Chuang CH, Tang TY, Chen CM.
    J Orthop Res; 2013 Jan 08; 31(1):125-31. PubMed ID: 22733692
    [Abstract] [Full Text] [Related]

  • 60. Elimination of superfluous neuromuscular junctions in rat calf muscles recovering from botulinum toxin-induced paralysis.
    Hassan SM, Jennekens FG, Wieneke G, Veldman H.
    Muscle Nerve; 1994 Jun 08; 17(6):623-31. PubMed ID: 8196705
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 4.