These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


622 related items for PubMed ID: 17614281

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Phosphorylation-dependent binding of mitotic cyclins to Cdc6 contributes to DNA replication control.
    Mimura S, Seki T, Tanaka S, Diffley JF.
    Nature; 2004 Oct 28; 431(7012):1118-23. PubMed ID: 15496876
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Molecular mechanisms underlying interferon-alpha-induced G0/G1 arrest: CKI-mediated regulation of G1 Cdk-complexes and activation of pocket proteins.
    Sangfelt O, Erickson S, Castro J, Heiden T, Gustafsson A, Einhorn S, Grandér D.
    Oncogene; 1999 May 06; 18(18):2798-810. PubMed ID: 10362250
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Budding yeast Swe1 is involved in the control of mitotic spindle elongation and is regulated by Cdc14 phosphatase during mitosis.
    Raspelli E, Cassani C, Chiroli E, Fraschini R.
    J Biol Chem; 2015 Jan 02; 290(1):1-12. PubMed ID: 25406317
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Concerted mechanism of Swe1/Wee1 regulation by multiple kinases in budding yeast.
    Asano S, Park JE, Sakchaisri K, Yu LR, Song S, Supavilai P, Veenstra TD, Lee KS.
    EMBO J; 2005 Jun 15; 24(12):2194-204. PubMed ID: 15920482
    [Abstract] [Full Text] [Related]

  • 13. Control of Swe1p degradation by the morphogenesis checkpoint.
    Sia RA, Bardes ES, Lew DJ.
    EMBO J; 1998 Nov 16; 17(22):6678-88. PubMed ID: 9822611
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Loss of meiotic rereplication block in Saccharomyces cerevisiae cells defective in Cdc28p regulation.
    Rice LM, Plakas C, Nickels JT.
    Eukaryot Cell; 2005 Jan 16; 4(1):55-62. PubMed ID: 15643060
    [Abstract] [Full Text] [Related]

  • 16. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates.
    Loog M, Morgan DO.
    Nature; 2005 Mar 03; 434(7029):104-8. PubMed ID: 15744308
    [Abstract] [Full Text] [Related]

  • 17. S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state.
    Dahmann C, Diffley JF, Nasmyth KA.
    Curr Biol; 1995 Nov 01; 5(11):1257-69. PubMed ID: 8574583
    [Abstract] [Full Text] [Related]

  • 18. Activating phosphorylation of the Saccharomyces cerevisiae cyclin-dependent kinase, cdc28p, precedes cyclin binding.
    Ross KE, Kaldis P, Solomon MJ.
    Mol Biol Cell; 2000 May 01; 11(5):1597-609. PubMed ID: 10793138
    [Abstract] [Full Text] [Related]

  • 19. The Rho-GAP Bem2p plays a GAP-independent role in the morphogenesis checkpoint.
    Marquitz AR, Harrison JC, Bose I, Zyla TR, McMillan JN, Lew DJ.
    EMBO J; 2002 Aug 01; 21(15):4012-25. PubMed ID: 12145202
    [Abstract] [Full Text] [Related]

  • 20. Hsl7 localizes to a septin ring and serves as an adapter in a regulatory pathway that relieves tyrosine phosphorylation of Cdc28 protein kinase in Saccharomyces cerevisiae.
    Shulewitz MJ, Inouye CJ, Thorner J.
    Mol Cell Biol; 1999 Oct 01; 19(10):7123-37. PubMed ID: 10490648
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 32.