These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


334 related items for PubMed ID: 17614489

  • 1. A multiple degree of freedom electromechanical Helmholtz resonator.
    Liu F, Horowitz S, Nishida T, Cattafesta L, Sheplak M.
    J Acoust Soc Am; 2007 Jul; 122(1):291-301. PubMed ID: 17614489
    [Abstract] [Full Text] [Related]

  • 2. Demonstration of a wireless, self-powered, electroacoustic liner system.
    Phipps A, Liu F, Cattafesta L, Sheplak M, Nishida T.
    J Acoust Soc Am; 2009 Feb; 125(2):873-81. PubMed ID: 19206864
    [Abstract] [Full Text] [Related]

  • 3. Acoustic energy harvesting using an electromechanical Helmholtz resonator.
    Liu F, Phipps A, Horowitz S, Ngo K, Cattafesta L, Nishida T, Sheplak M.
    J Acoust Soc Am; 2008 Apr; 123(4):1983-90. PubMed ID: 18397006
    [Abstract] [Full Text] [Related]

  • 4. Development of a micromachined piezoelectric microphone for aeroacoustics applications.
    Horowitz S, Nishida T, Cattafesta L, Sheplak M.
    J Acoust Soc Am; 2007 Dec; 122(6):3428-36. PubMed ID: 18247752
    [Abstract] [Full Text] [Related]

  • 5. An electromechanical low frequency panel sound absorber.
    Chang D, Liu B, Li X.
    J Acoust Soc Am; 2010 Aug; 128(2):639-45. PubMed ID: 20707433
    [Abstract] [Full Text] [Related]

  • 6. Effect of internal resistance of a Helmholtz resonator on acoustic energy reduction in enclosures.
    Yu G, Li D, Cheng L.
    J Acoust Soc Am; 2008 Dec; 124(6):3534-43. PubMed ID: 19206783
    [Abstract] [Full Text] [Related]

  • 7. Optimal design of resonant piezoelectric buzzer from a perspective of vibration-absorber theory.
    Bai MR, Chen RL, Chuang CY, Yu CS, Hsieh HL.
    J Acoust Soc Am; 2007 Sep; 122(3):1568. PubMed ID: 17927415
    [Abstract] [Full Text] [Related]

  • 8. Helmholtz-like resonators for thermoacoustic prime movers.
    Andersen BJ, Symko OG.
    J Acoust Soc Am; 2009 Feb; 125(2):787-92. PubMed ID: 19206856
    [Abstract] [Full Text] [Related]

  • 9. Pulse mode of operation of a spherical piezoceramic transducer filled with liquid and having a correcting electric circuit.
    Konovalov SI, Kuz'menko AG.
    J Acoust Soc Am; 2010 Dec; 128(6):3489-95. PubMed ID: 21218881
    [Abstract] [Full Text] [Related]

  • 10. Influence of an oscillating circuit on the radiation of transient acoustic waves by an electroelastic cylinder.
    Babaev AE, Babaev AA, Yanchevskiy IV.
    J Acoust Soc Am; 2010 Apr; 127(4):2282-9. PubMed ID: 20370009
    [Abstract] [Full Text] [Related]

  • 11. Mass detection using capacitive resonant silicon resonator employing LC resonant circuit technique.
    Kim SJ, Ono T, Esashi M.
    Rev Sci Instrum; 2007 Aug; 78(8):085103. PubMed ID: 17764351
    [Abstract] [Full Text] [Related]

  • 12. Structural acoustic control of plates with variable boundary conditions: design methodology.
    Sprofera JD, Cabell RH, Gibbs GP, Clark RL.
    J Acoust Soc Am; 2007 Jul; 122(1):271-9. PubMed ID: 17614487
    [Abstract] [Full Text] [Related]

  • 13. Coupled vibration analysis of the thin-walled cylindrical piezoelectric ceramic transducers.
    Aronov B.
    J Acoust Soc Am; 2009 Feb; 125(2):803-18. PubMed ID: 19206858
    [Abstract] [Full Text] [Related]

  • 14. Thermal boundary layer effects on the acoustical impedance of enclosures and consequences for acoustical sensing devices.
    Thompson SC, LoPresti JL.
    J Acoust Soc Am; 2008 Mar; 123(3):1364-70. PubMed ID: 18345825
    [Abstract] [Full Text] [Related]

  • 15. Measurements of mutual radiation impedance between baffled cylindrical shell transducers.
    Oishi T, Brown DA.
    J Acoust Soc Am; 2007 Sep; 122(3):1581. PubMed ID: 17927416
    [Abstract] [Full Text] [Related]

  • 16. Compound piezoelectric cylindrical resonators as sensors of the rheological parameters of viscoelastic media.
    Kiełczyński P, Szalewski M.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jun; 54(6):1199-206. PubMed ID: 17571818
    [Abstract] [Full Text] [Related]

  • 17. Electroacoustic absorbers: bridging the gap between shunt loudspeakers and active sound absorption.
    Lissek H, Boulandet R, Fleury R.
    J Acoust Soc Am; 2011 May; 129(5):2968-78. PubMed ID: 21568400
    [Abstract] [Full Text] [Related]

  • 18. Theoretical modelling of frequency dependent elastic loss in composite piezoelectric transducers.
    Orr LA, Mulholland AJ, O'Leary RL, Parr A, Pethrick RA, Hayward G.
    Ultrasonics; 2007 Dec; 47(1-4):130-7. PubMed ID: 17980896
    [Abstract] [Full Text] [Related]

  • 19. Piezoelectric circular ring flexural transducers.
    Aronov BS.
    J Acoust Soc Am; 2013 Aug; 134(2):1021-30. PubMed ID: 23927101
    [Abstract] [Full Text] [Related]

  • 20. Modified mason model for bulk acoustic wave resonators.
    Jamneala T, Bradley P, Koelle UB, Chien A.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2025-9. PubMed ID: 18986898
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.