These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


123 related items for PubMed ID: 17615557

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Kinetics of iron oxidation by Leptospirillum ferriphilum dominated culture at pH below one.
    Ozkaya B, Sahinkaya E, Nurmi P, Kaksonen AH, Puhakka JA.
    Biotechnol Bioeng; 2007 Aug 01; 97(5):1121-7. PubMed ID: 17187444
    [Abstract] [Full Text] [Related]

  • 3. Thermodynamic and kinetic characterization using process dynamics: acidophilic ferrous iron oxidation by Leptospirillum ferrooxidans.
    Kleerebezem R, van Loosdrecht MC.
    Biotechnol Bioeng; 2008 May 01; 100(1):49-60. PubMed ID: 18080344
    [Abstract] [Full Text] [Related]

  • 4. Kinetics of ferrous iron oxidation by Leptospirillum bacteria in continuous cultures.
    van Scherpenzeel DA, Boon M, Ras C, Hansford GS, Heijnen JJ.
    Biotechnol Prog; 1998 May 01; 14(3):425-33. PubMed ID: 9622523
    [Abstract] [Full Text] [Related]

  • 5. Effect of chloride on ferrous iron oxidation by a Leptospirillum ferriphilum-dominated chemostat culture.
    Gahan CS, Sundkvist JE, Dopson M, Sandström A.
    Biotechnol Bioeng; 2010 Jun 15; 106(3):422-31. PubMed ID: 20198654
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. High-rate ferric sulfate generation by a Leptospirillum ferriphilum-dominated biofilm and the role of jarosite in biomass retention in a fluidized-bed reactor.
    Kinnunen PH, Puhakka JA.
    Biotechnol Bioeng; 2004 Mar 30; 85(7):697-705. PubMed ID: 14991647
    [Abstract] [Full Text] [Related]

  • 8. The effect of temperature on the continuous ferrous-iron oxidation kinetics of a predominantly Leptospirillum ferrooxidans culture.
    Breed AW, Dempers CJ, Searby GE, Gardner MN, Rawlings DE, Hansford GS.
    Biotechnol Bioeng; 1999 Oct 05; 65(1):44-53. PubMed ID: 10440670
    [Abstract] [Full Text] [Related]

  • 9. A kinetic model for biological oxidation of ferrous iron by Thiobacillus ferrooxidans.
    Nemati M, Webb C.
    Biotechnol Bioeng; 1997 Mar 05; 53(5):478-86. PubMed ID: 18634043
    [Abstract] [Full Text] [Related]

  • 10. High-rate acidophilic ferrous iron oxidation in a biofilm airlift reactor and the role of the carrier material.
    Ebrahimi S, Fernández Morales FJ, Kleerebezem R, Heijnen JJ, van Loosdrecht MC.
    Biotechnol Bioeng; 2005 May 20; 90(4):462-72. PubMed ID: 15772947
    [Abstract] [Full Text] [Related]

  • 11. Iron speciation and iron species transformation in activated sludge membrane bioreactors.
    Wang XM, Waite TD.
    Water Res; 2010 Jun 20; 44(11):3511-21. PubMed ID: 20399481
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Development of an optimal medium for continuous ferrous iron oxidation by immobilized Acidothiobacillus ferrooxidans cells.
    Kim TW, Kim CJ, Chang YK, Ryu HW, Cho KS.
    Biotechnol Prog; 2002 Jun 20; 18(4):752-9. PubMed ID: 12153309
    [Abstract] [Full Text] [Related]

  • 14. Effect of wall growth on the kinetic modeling of nitrite oxidation in a CSTR.
    Dokianakis SN, Kornaros M, Lyberatos G.
    Biotechnol Bioeng; 2006 Mar 05; 93(4):718-26. PubMed ID: 16345085
    [Abstract] [Full Text] [Related]

  • 15. Numerical modeling of ferrous-ion oxidation rate in Acidithiobacillus ferrooxidans ATCC 23270: optimization of culture conditions through statistically designed experiments.
    Abdel-Fattah YR, Abdel-Fattah WR, Zamilpa R, Pierce JR.
    Acta Microbiol Pol; 2002 Mar 05; 51(3):225-35. PubMed ID: 12588097
    [Abstract] [Full Text] [Related]

  • 16. Selection of Leptospirillum ferrooxidans SRPCBL and development for enhanced ferric regeneration in stirred tank and airlift column reactor.
    Dave SR.
    Bioresour Technol; 2008 Nov 05; 99(16):7803-6. PubMed ID: 18325759
    [Abstract] [Full Text] [Related]

  • 17. Model-based evaluation of ferrous iron oxidation by acidophilic bacteria in chemostat and biofilm airlift reactors.
    Ebrahimi S, Faraghi N, Hosseini M.
    J Ind Microbiol Biotechnol; 2015 Oct 05; 42(10):1363-8. PubMed ID: 26264929
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Mineral and iron oxidation at low temperatures by pure and mixed cultures of acidophilic microorganisms.
    Dopson M, Halinen AK, Rahunen N, Ozkaya B, Sahinkaya E, Kaksonen AH, Lindström EB, Puhakka JA.
    Biotechnol Bioeng; 2007 Aug 01; 97(5):1205-15. PubMed ID: 17187443
    [Abstract] [Full Text] [Related]

  • 20. The effect of CO2 availability on the growth, iron oxidation and CO2-fixation rates of pure cultures of Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans.
    Bryan CG, Davis-Belmar CS, van Wyk N, Fraser MK, Dew D, Rautenbach GF, Harrison ST.
    Biotechnol Bioeng; 2012 Jul 01; 109(7):1693-703. PubMed ID: 22383083
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.