These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


404 related items for PubMed ID: 17631378

  • 1. Solute transport model for trace organic neutral and charged compounds through nanofiltration and reverse osmosis membranes.
    Kim TU, Drewes JE, Scott Summers R, Amy GL.
    Water Res; 2007 Sep; 41(17):3977-88. PubMed ID: 17631378
    [Abstract] [Full Text] [Related]

  • 2. Rejection of trace organic compounds by high-pressure membranes.
    Kim TU, Amy G, Drewes JE.
    Water Sci Technol; 2005 Sep; 51(6-7):335-44. PubMed ID: 16003994
    [Abstract] [Full Text] [Related]

  • 3. Trace organic solutes in closed-loop forward osmosis applications: influence of membrane fouling and modeling of solute build-up.
    D'Haese A, Le-Clech P, Van Nevel S, Verbeken K, Cornelissen ER, Khan SJ, Verliefde AR.
    Water Res; 2013 Sep 15; 47(14):5232-44. PubMed ID: 23866149
    [Abstract] [Full Text] [Related]

  • 4. Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis.
    Xie M, Nghiem LD, Price WE, Elimelech M.
    Water Res; 2012 May 15; 46(8):2683-92. PubMed ID: 22402269
    [Abstract] [Full Text] [Related]

  • 5. Viability of a low-pressure nanofilter in treating recycled water for water reuse applications: a pilot-scale study.
    Bellona C, Drewes JE.
    Water Res; 2007 Sep 15; 41(17):3948-58. PubMed ID: 17582458
    [Abstract] [Full Text] [Related]

  • 6. Transport of target anions, chromate (Cr (VI)), arsenate (As (V)), and perchlorate (ClO4-), through RO, NF, and UF membranes.
    Yoon J, Amy G, Yoon Y.
    Water Sci Technol; 2005 Sep 15; 51(6-7):327-34. PubMed ID: 16003993
    [Abstract] [Full Text] [Related]

  • 7. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes.
    Yoon J, Amy G, Chung J, Sohn J, Yoon Y.
    Chemosphere; 2009 Sep 15; 77(2):228-35. PubMed ID: 19679331
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications.
    Xu P, Drewes JE, Bellona C, Amy G, Kim TU, Adam M, Heberer T.
    Water Environ Res; 2005 Sep 15; 77(1):40-8. PubMed ID: 15765934
    [Abstract] [Full Text] [Related]

  • 11. Effects of water matrix on the rejection of neutral pharmaceutically active compound by thin-film composite nanofiltration and reverse osmosis membranes.
    Shah IA, Ali S, Yang Z, Ihsanullah I, Huang H.
    Chemosphere; 2022 Sep 15; 303(Pt 3):135211. PubMed ID: 35660049
    [Abstract] [Full Text] [Related]

  • 12. Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes.
    Nataraj SK, Hosamani KM, Aminabhavi TM.
    Water Res; 2006 Jul 15; 40(12):2349-56. PubMed ID: 16757012
    [Abstract] [Full Text] [Related]

  • 13. Comparison of tertiary treatment by nanofiltration and reverse osmosis for water reuse in denim textile industry.
    Ben Amar N, Kechaou N, Palmeri J, Deratani A, Sghaier A.
    J Hazard Mater; 2009 Oct 15; 170(1):111-7. PubMed ID: 19497667
    [Abstract] [Full Text] [Related]

  • 14. Removal of organic contaminants by RO and NF membranes.
    Yoon Y, Lueptow RM.
    J Memb Sci; 2005 Sep 15; 261(1-2):76-86. PubMed ID: 16134262
    [Abstract] [Full Text] [Related]

  • 15. Reverse osmosis membrane rejection for ersatz space mission wastewaters.
    Yoon Y, Lueptow RM.
    Water Res; 2005 Sep 15; 39(14):3298-308. PubMed ID: 16005043
    [Abstract] [Full Text] [Related]

  • 16. Evaluating the impacts of membrane type, coating, fouling, chemical properties and water chemistry on reverse osmosis rejection of seven nitrosoalklyamines, including NDMA.
    Steinle-Darling E, Zedda M, Plumlee MH, Ridgway HF, Reinhard M.
    Water Res; 2007 Sep 15; 41(17):3959-67. PubMed ID: 17582457
    [Abstract] [Full Text] [Related]

  • 17. The influence of natural organic matter and cations on the rejection of endocrine disrupting and pharmaceutically active compounds by nanofiltration.
    Comerton AM, Andrews RC, Bagley DM.
    Water Res; 2009 Feb 15; 43(3):613-22. PubMed ID: 19046596
    [Abstract] [Full Text] [Related]

  • 18. Osmotic, diffusive and convective volume and solute flows of ionic solutions through a horizontally mounted polymeric membrane.
    Jasik-Slezak J, Grzegorczyn S, Slezak A.
    Polim Med; 2007 Feb 15; 37(3):31-46. PubMed ID: 18251203
    [Abstract] [Full Text] [Related]

  • 19. Use of fouling resistant nanofiltration and reverse osmosis membranes for dyeing wastewater effluent treatment.
    Myung SW, Choi IH, Lee SH, Kim IC, Lee KH.
    Water Sci Technol; 2005 Feb 15; 51(6-7):159-64. PubMed ID: 16003974
    [Abstract] [Full Text] [Related]

  • 20. Comprehensive bench- and pilot-scale investigation of trace organic compounds rejection by forward osmosis.
    Hancock NT, Xu P, Heil DM, Bellona C, Cath TY.
    Environ Sci Technol; 2011 Oct 01; 45(19):8483-90. PubMed ID: 21838294
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.