These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1105 related items for PubMed ID: 17636022

  • 1. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2.
    Sun Z, Zhang S, Chan JY, Zhang DD.
    Mol Cell Biol; 2007 Sep; 27(18):6334-49. PubMed ID: 17636022
    [Abstract] [Full Text] [Related]

  • 2. Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents.
    Giudice A, Arra C, Turco MC.
    Methods Mol Biol; 2010 Sep; 647():37-74. PubMed ID: 20694660
    [Abstract] [Full Text] [Related]

  • 3. Antioxidant-induced INrf2 (Keap1) tyrosine 85 phosphorylation controls the nuclear export and degradation of the INrf2-Cul3-Rbx1 complex to allow normal Nrf2 activation and repression.
    Kaspar JW, Niture SK, Jaiswal AK.
    J Cell Sci; 2012 Feb 15; 125(Pt 4):1027-38. PubMed ID: 22448038
    [Abstract] [Full Text] [Related]

  • 4. Keap1 regulates the oxidation-sensitive shuttling of Nrf2 into and out of the nucleus via a Crm1-dependent nuclear export mechanism.
    Velichkova M, Hasson T.
    Mol Cell Biol; 2005 Jun 15; 25(11):4501-13. PubMed ID: 15899855
    [Abstract] [Full Text] [Related]

  • 5. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex.
    Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M.
    Mol Cell Biol; 2004 Dec 15; 24(24):10941-53. PubMed ID: 15572695
    [Abstract] [Full Text] [Related]

  • 6. [Prothyomosin alpha interaction with KEAP1 doesn't lead to prothymosin alpha ubiquination and degradation].
    Mel'nikov SV, Evstaf'eva AG, Vartapetian AB.
    Mol Biol (Mosk); 2007 Dec 15; 41(5):868-75. PubMed ID: 18240569
    [Abstract] [Full Text] [Related]

  • 7. CAND1-mediated substrate adaptor recycling is required for efficient repression of Nrf2 by Keap1.
    Lo SC, Hannink M.
    Mol Cell Biol; 2006 Feb 15; 26(4):1235-44. PubMed ID: 16449638
    [Abstract] [Full Text] [Related]

  • 8. Nrf2 controls constitutive and inducible expression of ARE-driven genes through a dynamic pathway involving nucleocytoplasmic shuttling by Keap1.
    Nguyen T, Sherratt PJ, Nioi P, Yang CS, Pickett CB.
    J Biol Chem; 2005 Sep 16; 280(37):32485-92. PubMed ID: 16000310
    [Abstract] [Full Text] [Related]

  • 9. KPNA6 (Importin {alpha}7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response.
    Sun Z, Wu T, Zhao F, Lau A, Birch CM, Zhang DD.
    Mol Cell Biol; 2011 May 16; 31(9):1800-11. PubMed ID: 21383067
    [Abstract] [Full Text] [Related]

  • 10. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A, Motohashi H.
    Nitric Oxide; 2011 Aug 01; 25(2):153-60. PubMed ID: 21385624
    [Abstract] [Full Text] [Related]

  • 11. A mutation of Keap1 found in breast cancer impairs its ability to repress Nrf2 activity.
    Nioi P, Nguyen T.
    Biochem Biophys Res Commun; 2007 Nov 03; 362(4):816-21. PubMed ID: 17822677
    [Abstract] [Full Text] [Related]

  • 12. The Keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome.
    Vriend J, Reiter RJ.
    Mol Cell Endocrinol; 2015 Feb 05; 401():213-20. PubMed ID: 25528518
    [Abstract] [Full Text] [Related]

  • 13. MicroRNA-200a controls Nrf2 activation by target Keap1 in hepatic stellate cell proliferation and fibrosis.
    Yang JJ, Tao H, Hu W, Liu LP, Shi KH, Deng ZY, Li J.
    Cell Signal; 2014 Nov 05; 26(11):2381-9. PubMed ID: 25049078
    [Abstract] [Full Text] [Related]

  • 14. The gasotransmitter hydrogen sulfide induces nrf2-target genes by inactivating the keap1 ubiquitin ligase substrate adaptor through formation of a disulfide bond between cys-226 and cys-613.
    Hourihan JM, Kenna JG, Hayes JD.
    Antioxid Redox Signal; 2013 Aug 10; 19(5):465-81. PubMed ID: 23145493
    [Abstract] [Full Text] [Related]

  • 15. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase.
    Furukawa M, Xiong Y.
    Mol Cell Biol; 2005 Jan 10; 25(1):162-71. PubMed ID: 15601839
    [Abstract] [Full Text] [Related]

  • 16. Tetrachlorobenzoquinone activates Nrf2 signaling by Keap1 cross-linking and ubiquitin translocation but not Keap1-Cullin3 complex dissociation.
    Su C, Zhang P, Song X, Shi Q, Fu J, Xia X, Bai H, Hu L, Xu D, Song E, Song Y.
    Chem Res Toxicol; 2015 Apr 20; 28(4):765-74. PubMed ID: 25742418
    [Abstract] [Full Text] [Related]

  • 17. Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome.
    Katoh Y, Iida K, Kang MI, Kobayashi A, Mizukami M, Tong KI, McMahon M, Hayes JD, Itoh K, Yamamoto M.
    Arch Biochem Biophys; 2005 Jan 15; 433(2):342-50. PubMed ID: 15581590
    [Abstract] [Full Text] [Related]

  • 18. Activation of the Nrf2/ARE pathway via S-alkylation of cysteine 151 in the chemopreventive agent-sensor Keap1 protein by falcarindiol, a conjugated diacetylene compound.
    Ohnuma T, Nakayama S, Anan E, Nishiyama T, Ogura K, Hiratsuka A.
    Toxicol Appl Pharmacol; 2010 Apr 01; 244(1):27-36. PubMed ID: 20026152
    [Abstract] [Full Text] [Related]

  • 19. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution.
    Taguchi K, Motohashi H, Yamamoto M.
    Genes Cells; 2011 Feb 01; 16(2):123-40. PubMed ID: 21251164
    [Abstract] [Full Text] [Related]

  • 20. The role of Nrf2 in oxidative stress-induced endothelial injuries.
    Chen B, Lu Y, Chen Y, Cheng J.
    J Endocrinol; 2015 Jun 01; 225(3):R83-99. PubMed ID: 25918130
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 56.