These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Positive, site-specific associations between bone mineral status, fitness, and time spent at high-impact activities in 16- to 18-year-old boys. Ginty F, Rennie KL, Mills L, Stear S, Jones S, Prentice A. Bone; 2005 Jan; 36(1):101-10. PubMed ID: 15664008 [Abstract] [Full Text] [Related]
4. The association between dietary protein intake and bone mass accretion in pubertal girls with low calcium intakes. Zhang Q, Ma G, Greenfield H, Zhu K, Du X, Foo LH, Hu X, Fraser DR. Br J Nutr; 2010 Mar; 103(5):714-23. PubMed ID: 19814838 [Abstract] [Full Text] [Related]
8. Bone and body composition of children and adolescents with repeated forearm fractures. Goulding A, Grant AM, Williams SM. J Bone Miner Res; 2005 Dec; 20(12):2090-6. PubMed ID: 16294262 [Abstract] [Full Text] [Related]
9. Relationships of appendicular LMI and total body LMI to bone mass and physical activity levels in a birth cohort of New Zealand five-year olds. Goulding A, Taylor RW, Grant AM, Jones S, Taylor BJ, Williams SM. Bone; 2009 Sep; 45(3):455-9. PubMed ID: 19450717 [Abstract] [Full Text] [Related]
11. Growth and bone mineral accretion during puberty in Chinese girls: a five-year longitudinal study. Zhu K, Greenfield H, Zhang Q, Du X, Ma G, Foo LH, Cowell CT, Fraser DR. J Bone Miner Res; 2008 Feb; 23(2):167-72. PubMed ID: 17907923 [Abstract] [Full Text] [Related]
12. Total-body bone mineral content in non-corticosteroid-treated postpubertal females with juvenile rheumatoid arthritis: frequency of osteopenia and contributing factors. Henderson CJ, Specker BL, Sierra RI, Campaigne BN, Lovell DJ. Arthritis Rheum; 2000 Mar; 43(3):531-40. PubMed ID: 10728745 [Abstract] [Full Text] [Related]
14. Muscular development and physical activity as major determinants of femoral bone mass acquisition during growth. Vicente-Rodriguez G, Ara I, Perez-Gomez J, Dorado C, Calbet JA. Br J Sports Med; 2005 Sep; 39(9):611-6. PubMed ID: 16118297 [Abstract] [Full Text] [Related]
15. Bone strength index in adolescent girls: does physical activity make a difference? Greene DA, Naughton GA, Briody JN, Kemp A, Woodhead H, Corrigan L. Br J Sports Med; 2005 Sep; 39(9):622-7; discussion 627. PubMed ID: 16118299 [Abstract] [Full Text] [Related]
16. Association between bone, body composition and strength in premenarcheal girls and postmenopausal women. van Langendonck L, Claessens AL, Lysens R, Koninckx PR, Beunen G. Ann Hum Biol; 2004 Sep; 31(2):228-44. PubMed ID: 15204365 [Abstract] [Full Text] [Related]
17. [Relationship between bone mineral content and growth disorders in children with juvenile idiopathic arthritis]. Górska A, Urban M, Konstantynowicz J, Bartnicka M, Chlabicz S, Górski S, Kaczmarski M. Pol Merkur Lekarski; 2008 Mar; 24(141):227-30. PubMed ID: 18634288 [Abstract] [Full Text] [Related]
18. Relationships between body composition, muscular strength, and bone mineral density in estrogen-deficient postmenopausal women. Sherk VD, Palmer IJ, Bemben MG, Bemben DA. J Clin Densitom; 2009 Mar; 12(3):292-8. PubMed ID: 19155180 [Abstract] [Full Text] [Related]
19. Age influences anthropometric and fitness-related predictors of bone mineral in men. Miller LE, Pierson LM, Pierson ME, Kiebzak GM, Ramp WK, Herbert WG, Cook JW. Aging Male; 2009 Mar; 12(2-3):47-53. PubMed ID: 19557655 [Abstract] [Full Text] [Related]
20. Relationships of acylated and des-acyl ghrelin levels to bone mineralization in obese children and adolescents. Pacifico L, Anania C, Poggiogalle E, Osborn JF, Prossomariti G, Martino F, Chiesa C. Bone; 2009 Aug; 45(2):274-9. PubMed ID: 19393347 [Abstract] [Full Text] [Related] Page: [Next] [New Search]