These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


704 related items for PubMed ID: 17640933

  • 1. Low-affinity spermine block mediating outward currents through Kir2.1 and Kir2.2 inward rectifier potassium channels.
    Ishihara K, Yan DH.
    J Physiol; 2007 Sep 15; 583(Pt 3):891-908. PubMed ID: 17640933
    [Abstract] [Full Text] [Related]

  • 2. Two Kir2.1 channel populations with different sensitivities to Mg(2+) and polyamine block: a model for the cardiac strong inward rectifier K(+) channel.
    Yan DH, Ishihara K.
    J Physiol; 2005 Mar 15; 563(Pt 3):725-44. PubMed ID: 15618275
    [Abstract] [Full Text] [Related]

  • 3. Two modes of polyamine block regulating the cardiac inward rectifier K+ current IK1 as revealed by a study of the Kir2.1 channel expressed in a human cell line.
    Ishihara K, Ehara T.
    J Physiol; 2004 Apr 01; 556(Pt 1):61-78. PubMed ID: 14724206
    [Abstract] [Full Text] [Related]

  • 4. Voltage-dependent gating and block by internal spermine of the murine inwardly rectifying K+ channel, Kir2.1.
    Matsuda H, Oishi K, Omori K.
    J Physiol; 2003 Apr 15; 548(Pt 2):361-71. PubMed ID: 12640008
    [Abstract] [Full Text] [Related]

  • 5. Functional roles of charged amino acid residues on the wall of the cytoplasmic pore of Kir2.1.
    Fujiwara Y, Kubo Y.
    J Gen Physiol; 2006 Apr 15; 127(4):401-19. PubMed ID: 16533896
    [Abstract] [Full Text] [Related]

  • 6. Tamoxifen inhibits inward rectifier K+ 2.x family of inward rectifier channels by interfering with phosphatidylinositol 4,5-bisphosphate-channel interactions.
    Ponce-Balbuena D, López-Izquierdo A, Ferrer T, Rodríguez-Menchaca AA, Aréchiga-Figueroa IA, Sánchez-Chapula JA.
    J Pharmacol Exp Ther; 2009 Nov 15; 331(2):563-73. PubMed ID: 19654266
    [Abstract] [Full Text] [Related]

  • 7. Ser165 in the second transmembrane region of the Kir2.1 channel determines its susceptibility to blockade by intracellular Mg2+.
    Fujiwara Y, Kubo Y.
    J Gen Physiol; 2002 Nov 15; 120(5):677-93. PubMed ID: 12407079
    [Abstract] [Full Text] [Related]

  • 8. Elementary properties of Kir2.1, a strong inwardly rectifying K(+) channel expressed by pigeon vestibular type II hair cells.
    Zampini V, Masetto S, Correia MJ.
    Neuroscience; 2008 Sep 09; 155(4):1250-61. PubMed ID: 18652879
    [Abstract] [Full Text] [Related]

  • 9. Different intracellular polyamine concentrations underlie the difference in the inward rectifier K(+) currents in atria and ventricles of the guinea-pig heart.
    Yan DH, Nishimura K, Yoshida K, Nakahira K, Ehara T, Igarashi K, Ishihara K.
    J Physiol; 2005 Mar 15; 563(Pt 3):713-24. PubMed ID: 15668212
    [Abstract] [Full Text] [Related]

  • 10. Electrostatics in the cytoplasmic pore produce intrinsic inward rectification in kir2.1 channels.
    Yeh SH, Chang HK, Shieh RC.
    J Gen Physiol; 2005 Dec 15; 126(6):551-62. PubMed ID: 16316974
    [Abstract] [Full Text] [Related]

  • 11. Mechanism of the voltage sensitivity of IRK1 inward-rectifier K+ channel block by the polyamine spermine.
    Shin HG, Lu Z.
    J Gen Physiol; 2005 Apr 15; 125(4):413-26. PubMed ID: 15795311
    [Abstract] [Full Text] [Related]

  • 12. A difference in inward rectification and polyamine block and permeation between the Kir2.1 and Kir3.1/Kir3.4 K+ channels.
    Makary SM, Claydon TW, Enkvetchakul D, Nichols CG, Boyett MR.
    J Physiol; 2005 Nov 01; 568(Pt 3):749-66. PubMed ID: 16109731
    [Abstract] [Full Text] [Related]

  • 13. An inwardly rectifying K+ channel in bovine parotid acinar cells: possible involvement of Kir2.1.
    Hayashi M, Komazaki S, Ishikawa T.
    J Physiol; 2003 Feb 15; 547(Pt 1):255-69. PubMed ID: 12562923
    [Abstract] [Full Text] [Related]

  • 14. Evidence for sequential ion-binding loci along the inner pore of the IRK1 inward-rectifier K+ channel.
    Shin HG, Xu Y, Lu Z.
    J Gen Physiol; 2005 Aug 15; 126(2):123-35. PubMed ID: 16043774
    [Abstract] [Full Text] [Related]

  • 15. Voltage-dependent inhibition of outward Kir2.1 currents by extracellular spermine.
    Chang HK, Shieh RC.
    Biochim Biophys Acta; 2013 Feb 15; 1828(2):765-75. PubMed ID: 22948070
    [Abstract] [Full Text] [Related]

  • 16. Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification.
    Pegan S, Arrabit C, Zhou W, Kwiatkowski W, Collins A, Slesinger PA, Choe S.
    Nat Neurosci; 2005 Mar 15; 8(3):279-87. PubMed ID: 15723059
    [Abstract] [Full Text] [Related]

  • 17. Thiopental inhibits function of different inward rectifying potassium channel isoforms by a similar mechanism.
    López-Izquierdo A, Ponce-Balbuena D, Ferrer T, Rodríguez-Menchaca AA, Sánchez-Chapula JA.
    Eur J Pharmacol; 2010 Jul 25; 638(1-3):33-41. PubMed ID: 20447386
    [Abstract] [Full Text] [Related]

  • 18. Differential polyamine sensitivity in inwardly rectifying Kir2 potassium channels.
    Panama BK, Lopatin AN.
    J Physiol; 2006 Mar 01; 571(Pt 2):287-302. PubMed ID: 16373386
    [Abstract] [Full Text] [Related]

  • 19. Extracellular K+ elevates outward currents through Kir2.1 channels by increasing single-channel conductance.
    Liu TA, Chang HK, Shieh RC.
    Biochim Biophys Acta; 2011 Jun 01; 1808(6):1772-8. PubMed ID: 21376013
    [Abstract] [Full Text] [Related]

  • 20. Unique Kir2.x properties determine regional and species differences in the cardiac inward rectifier K+ current.
    Dhamoon AS, Pandit SV, Sarmast F, Parisian KR, Guha P, Li Y, Bagwe S, Taffet SM, Anumonwo JM.
    Circ Res; 2004 May 28; 94(10):1332-9. PubMed ID: 15087421
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 36.