These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


242 related items for PubMed ID: 17645798

  • 1. False positive reduction in protein-protein interaction predictions using gene ontology annotations.
    Mahdavi MA, Lin YH.
    BMC Bioinformatics; 2007 Jul 23; 8():262. PubMed ID: 17645798
    [Abstract] [Full Text] [Related]

  • 2. Utilizing shared interacting domain patterns and Gene Ontology information to improve protein-protein interaction prediction.
    Roslan R, Othman RM, Shah ZA, Kasim S, Asmuni H, Taliba J, Hassan R, Zakaria Z.
    Comput Biol Med; 2010 Jun 23; 40(6):555-64. PubMed ID: 20417930
    [Abstract] [Full Text] [Related]

  • 3. AVID: an integrative framework for discovering functional relationships among proteins.
    Jiang T, Keating AE.
    BMC Bioinformatics; 2005 Jun 01; 6():136. PubMed ID: 15929793
    [Abstract] [Full Text] [Related]

  • 4. Comparative analysis and assessment of M. tuberculosis H37Rv protein-protein interaction datasets.
    Zhou H, Wong L.
    BMC Genomics; 2011 Nov 30; 12 Suppl 3(Suppl 3):S20. PubMed ID: 22369691
    [Abstract] [Full Text] [Related]

  • 5. MCL-CAw: a refinement of MCL for detecting yeast complexes from weighted PPI networks by incorporating core-attachment structure.
    Srihari S, Ning K, Leong HW.
    BMC Bioinformatics; 2010 Oct 12; 11():504. PubMed ID: 20939868
    [Abstract] [Full Text] [Related]

  • 6. A matrix based algorithm for Protein-Protein Interaction prediction using Domain-Domain Associations.
    Binny Priya S, Saha S, Anishetty R, Anishetty S.
    J Theor Biol; 2013 Jun 07; 326():36-42. PubMed ID: 23473859
    [Abstract] [Full Text] [Related]

  • 7. CvManGO, a method for leveraging computational predictions to improve literature-based Gene Ontology annotations.
    Park J, Costanzo MC, Balakrishnan R, Cherry JM, Hong EL.
    Database (Oxford); 2012 Jun 07; 2012():bas001. PubMed ID: 22434836
    [Abstract] [Full Text] [Related]

  • 8. A fast hierarchical clustering algorithm for functional modules discovery in protein interaction networks.
    Wang J, Li M, Chen J, Pan Y.
    IEEE/ACM Trans Comput Biol Bioinform; 2011 Jun 07; 8(3):607-20. PubMed ID: 20733244
    [Abstract] [Full Text] [Related]

  • 9. Can simple codon pair usage predict protein-protein interaction?
    Zhou Y, Zhou YS, He F, Song J, Zhang Z.
    Mol Biosyst; 2012 Apr 07; 8(5):1396-404. PubMed ID: 22392100
    [Abstract] [Full Text] [Related]

  • 10. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks.
    Xu B, Guan J.
    IEEE/ACM Trans Comput Biol Bioinform; 2014 Apr 07; 11(4):616-27. PubMed ID: 26356332
    [Abstract] [Full Text] [Related]

  • 11. Is newer better?--evaluating the effects of data curation on integrated analyses in Saccharomyces cerevisiae.
    James K, Wipat A, Hallinan J.
    Integr Biol (Camb); 2012 Jul 07; 4(7):715-27. PubMed ID: 22526920
    [Abstract] [Full Text] [Related]

  • 12. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.
    Theofilatos K, Pavlopoulou N, Papasavvas C, Likothanassis S, Dimitrakopoulos C, Georgopoulos E, Moschopoulos C, Mavroudi S.
    Artif Intell Med; 2015 Mar 07; 63(3):181-9. PubMed ID: 25765008
    [Abstract] [Full Text] [Related]

  • 13. Reconstituting protein interaction networks using parameter-dependent domain-domain interactions.
    Memišević V, Wallqvist A, Reifman J.
    BMC Bioinformatics; 2013 May 07; 14():154. PubMed ID: 23651452
    [Abstract] [Full Text] [Related]

  • 14. Increasing confidence of protein interactomes using network topological metrics.
    Chen J, Hsu W, Lee ML, Ng SK.
    Bioinformatics; 2006 Aug 15; 22(16):1998-2004. PubMed ID: 16787971
    [Abstract] [Full Text] [Related]

  • 15. Probabilistic prediction and ranking of human protein-protein interactions.
    Scott MS, Barton GJ.
    BMC Bioinformatics; 2007 Jul 05; 8():239. PubMed ID: 17615067
    [Abstract] [Full Text] [Related]

  • 16. Integrating diverse biological and computational sources for reliable protein-protein interactions.
    Wu M, Li X, Chua HN, Kwoh CK, Ng SK.
    BMC Bioinformatics; 2010 Oct 15; 11 Suppl 7(Suppl 7):S8. PubMed ID: 21106130
    [Abstract] [Full Text] [Related]

  • 17. Handling Noise in Protein Interaction Networks.
    Correia FB, Coelho ED, Oliveira JL, Arrais JP.
    Biomed Res Int; 2019 Oct 15; 2019():8984248. PubMed ID: 31828144
    [Abstract] [Full Text] [Related]

  • 18. Predicting co-complexed protein pairs using genomic and proteomic data integration.
    Zhang LV, Wong SL, King OD, Roth FP.
    BMC Bioinformatics; 2004 Apr 16; 5():38. PubMed ID: 15090078
    [Abstract] [Full Text] [Related]

  • 19. Inference of gene interaction networks using conserved subsequential patterns from multiple time course gene expression datasets.
    Liu Q, Song R, Li J.
    BMC Genomics; 2015 Apr 16; 16 Suppl 12(Suppl 12):S4. PubMed ID: 26681650
    [Abstract] [Full Text] [Related]

  • 20. Global investigation of protein-protein interactions in yeast Saccharomyces cerevisiae using re-occurring short polypeptide sequences.
    Pitre S, North C, Alamgir M, Jessulat M, Chan A, Luo X, Green JR, Dumontier M, Dehne F, Golshani A.
    Nucleic Acids Res; 2008 Aug 16; 36(13):4286-94. PubMed ID: 18586826
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.