These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Investigation of a choline phosphate synthesis pathway in Streptococcus pneumoniae: evidence for choline phosphate cytidylyltransferase activity. Whiting GC, Gillespie SH. FEMS Microbiol Lett; 1996 Oct 01; 143(2-3):279-84. PubMed ID: 8837483 [Abstract] [Full Text] [Related]
5. Yeast mutant with thermolabile CDP-choline synthesis. Isolation and characterization of a cholinephosphate cytidyltransferase mutant. Nikawa J, Yonemura K, Yamashita S. Eur J Biochem; 1983 Mar 01; 131(1):223-9. PubMed ID: 6299731 [No Abstract] [Full Text] [Related]
6. 1-beta-D-arabinofuranosylcytosine-diphosphate-choline is formed by the reversal of cholinephosphotransferase and not via cytidylyltransferase. Kucera GL, Capizzi RL. Cancer Res; 1992 Jul 15; 52(14):3886-91. PubMed ID: 1377599 [Abstract] [Full Text] [Related]
7. The uptake of choline by Streptococcus pneumoniae. Thomas AM, Lambert PA, Poxton IR. J Gen Microbiol; 1978 Dec 15; 109(2):313-7. PubMed ID: 34010 [Abstract] [Full Text] [Related]
8. Stimulation of CDP-choline biosynthesis by enantiomeric lysophosphatidylcholines in rat intestinal mucosa. O'Doherty PJ, Smith NB, Kuksis A. Arch Biochem Biophys; 1977 Apr 15; 180(1):10-8. PubMed ID: 856035 [No Abstract] [Full Text] [Related]
9. Cellular localization of choline-utilization proteins in Streptococcus pneumoniae using novel fluorescent reporter systems. Eberhardt A, Wu LJ, Errington J, Vollmer W, Veening JW. Mol Microbiol; 2009 Oct 15; 74(2):395-408. PubMed ID: 19737355 [Abstract] [Full Text] [Related]
10. Engineering substrate and energy metabolism for living cell production of cytidine-5'-diphosphocholine. Ren Y, Liu Q, Liu H, Zhou X, Zhang Y, Cai M. Biotechnol Bioeng; 2020 May 15; 117(5):1426-1435. PubMed ID: 31997310 [Abstract] [Full Text] [Related]
11. Unusual metal ion cofactor requirement of Entamoeba histolytica choline and ethanolamine kinase isoforms. Chang CH, Few LL, Lim BH, Yvonne-Tee GB, Chew AL, See Too WC. Parasitol Res; 2023 Jul 15; 122(7):1651-1661. PubMed ID: 37202563 [Abstract] [Full Text] [Related]
12. Uptake and incorporation of choline and ethanolamine into lipoteichoic acid and teichoic acid by the choline-independent mutant JY2190 of Streptococcus pneumoniae. Leopold K, Fischer W. FEMS Microbiol Lett; 1998 Dec 15; 169(2):355-9. PubMed ID: 9868781 [Abstract] [Full Text] [Related]
13. The enzymes of lecithin biosynthesis in human neonatal lungs. IV. Phosphorylcholine cytidyltransferase. Thom ML, Zachman RD. Pediatr Res; 1975 Apr 15; 9(4):201-5. PubMed ID: 238177 [Abstract] [Full Text] [Related]
14. Choline in the cell wall of a bacterium: novel type of polymer-linked choline in Pneumococcus. Tomasz A. Science; 1967 Aug 11; 157(3789):694-7. PubMed ID: 4381896 [Abstract] [Full Text] [Related]
15. Construction of a plasmid carrying both CTP synthetase and a fused gene formed from cholinephosphate cytidylyltransferase and choline kinase genes and its application to industrial CDP-choline production: enzymatic production of CDP-choline from orotic acid (Part II). Fujio T, Teshiba S, Maruyama A. Biosci Biotechnol Biochem; 1997 Jun 11; 61(6):960-4. PubMed ID: 9214754 [Abstract] [Full Text] [Related]
16. Mutations in the tacF gene of clinical strains and laboratory transformants of Streptococcus pneumoniae: impact on choline auxotrophy and growth rate. González A, Llull D, Morales M, García P, García E. J Bacteriol; 2008 Jun 11; 190(12):4129-38. PubMed ID: 18424523 [Abstract] [Full Text] [Related]
17. The essential tacF gene is responsible for the choline-dependent growth phenotype of Streptococcus pneumoniae. Damjanovic M, Kharat AS, Eberhardt A, Tomasz A, Vollmer W. J Bacteriol; 2007 Oct 11; 189(19):7105-11. PubMed ID: 17660291 [Abstract] [Full Text] [Related]
18. Identification and validation of novel and more effective choline kinase inhibitors against Streptococcus pneumoniae. Zimmerman T, Chasten V, Lacal JC, Ibrahim SA. Sci Rep; 2020 Sep 22; 10(1):15418. PubMed ID: 32963303 [Abstract] [Full Text] [Related]
19. Drastic reduction in the virulence of Streptococcus pneumoniae expressing type 2 capsular polysaccharide but lacking choline residues in the cell wall. Kharat AS, Tomasz A. Mol Microbiol; 2006 Apr 22; 60(1):93-107. PubMed ID: 16556223 [Abstract] [Full Text] [Related]
20. Specific and spatial labeling of choline-containing teichoic acids in Streptococcus pneumoniae by click chemistry. Di Guilmi AM, Bonnet J, Peiβert S, Durmort C, Gallet B, Vernet T, Gisch N, Wong YS. Chem Commun (Camb); 2017 Sep 21; 53(76):10572-10575. PubMed ID: 28894874 [Abstract] [Full Text] [Related] Page: [Next] [New Search]