These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
381 related items for PubMed ID: 17650195
1. Direct comparison of four bacterial source tracking methods and use of composite data sets. Casarez EA, Pillai SD, Mott JB, Vargas M, Dean KE, Di Giovanni GD. J Appl Microbiol; 2007 Aug; 103(2):350-64. PubMed ID: 17650195 [Abstract] [Full Text] [Related]
2. Evaluation of antibiotic resistance analysis and ribotyping for identification of faecal pollution sources in an urban watershed. Moore DF, Harwood VJ, Ferguson DM, Lukasik J, Hannah P, Getrich M, Brownell M. J Appl Microbiol; 2005 Aug; 99(3):618-28. PubMed ID: 16108804 [Abstract] [Full Text] [Related]
3. Genotype diversity of Escherichia coli isolates in natural waters determined by PFGE and ERIC-PCR. Casarez EA, Pillai SD, Di Giovanni GD. Water Res; 2007 Aug; 41(16):3643-8. PubMed ID: 17475306 [Abstract] [Full Text] [Related]
4. Identification of the sources of Escherichia coli in a watershed using carbon-utilization patterns and composite data sets. Moussa SH, Massengale RD. J Water Health; 2008 Jun; 6(2):197-207. PubMed ID: 18209282 [Abstract] [Full Text] [Related]
5. Novel application of a statistical technique, Random Forests, in a bacterial source tracking study. Smith A, Sterba-Boatwright B, Mott J. Water Res; 2010 Jul; 44(14):4067-76. PubMed ID: 20566209 [Abstract] [Full Text] [Related]
6. The use of ribotyping and antibiotic resistance patterns for identification of host sources of Escherichia coli strains. Samadpour M, Roberts MC, Kitts C, Mulugeta W, Alfi D. Lett Appl Microbiol; 2005 Jul; 40(1):63-8. PubMed ID: 15613004 [Abstract] [Full Text] [Related]
7. Sourcing faecal pollution: a combination of library-dependent and library-independent methods to identify human faecal pollution in non-sewered catchments. Ahmed W, Stewart J, Gardner T, Powell D, Brooks P, Sullivan D, Tindale N. Water Res; 2007 Aug; 41(16):3771-9. PubMed ID: 17482658 [Abstract] [Full Text] [Related]
8. [Evaluation of genotypic and phenotypic methods for the differentiation of Campylobacter jejuni and Campylobacter coli clinical isolates from Poland. II. PFGE, ERIC-PCR, PCR-flaA-RFLP and MLST]. Wardak S, Jagielski M. Med Dosw Mikrobiol; 2009 Aug; 61(1):63-77. PubMed ID: 19517816 [Abstract] [Full Text] [Related]
9. Microbial source tracking in a rural watershed dominated by cattle. Graves AK, Hagedorn C, Brooks A, Hagedorn RL, Martin E. Water Res; 2007 Aug; 41(16):3729-39. PubMed ID: 17582454 [Abstract] [Full Text] [Related]
10. Optimization and validation of rep-PCR genotypic libraries for microbial source tracking of environmental Escherichia coli isolates. Lyautey E, Lu Z, Lapen DR, Berkers TE, Edge TA, Topp E. Can J Microbiol; 2010 Jan; 56(1):8-17. PubMed ID: 20130688 [Abstract] [Full Text] [Related]
11. Comparison of repetitive extragenic palindromic sequence-based PCR with PCR ribotyping and pulsed-field gel electrophoresis in studying the clonality of Clostridium difficile. Pasanen T, Kotila SM, Horsma J, Virolainen A, Jalava J, Ibrahem S, Antikainen J, Mero S, Tarkka E, Vaara M, Tissari P. Clin Microbiol Infect; 2011 Feb; 17(2):166-75. PubMed ID: 20331683 [Abstract] [Full Text] [Related]
12. Repetitive element (REP)-polymerase chain reaction (PCR) analysis of Escherichia coli isolates from recreational waters of southeastern Lake Huron. Kon T, Weir SC, Howell ET, Lee H, Trevors JT. Can J Microbiol; 2009 Mar; 55(3):269-76. PubMed ID: 19370070 [Abstract] [Full Text] [Related]
13. Comparison of genotypic-based microbial source tracking methods requiring a host origin database. Myoda SP, Carson CA, Fuhrmann JJ, Hahm BK, Hartel PG, Yampara-Lquise H, Johnson L, Kuntz RL, Nakatsu CH, Sadowsky MJ, Samadpour M. J Water Health; 2003 Dec; 1(4):167-80. PubMed ID: 15382722 [Abstract] [Full Text] [Related]
14. Sourcing faecal pollution from onsite wastewater treatment systems in surface waters using antibiotic resistance analysis. Carroll S, Hargreaves M, Goonetilleke A. J Appl Microbiol; 2005 Dec; 99(3):471-82. PubMed ID: 16108788 [Abstract] [Full Text] [Related]
15. Choice of indicator organism and library size considerations for phenotypic microbial source tracking by FAME profiling. Duran M, Yurtsever D, Dunaev T. Water Sci Technol; 2009 Dec; 60(10):2659-68. PubMed ID: 19923772 [Abstract] [Full Text] [Related]
16. Phenotypic library-based microbial source tracking methods: efficacy in the California collaborative study. Harwood VJ, Wiggins B, Hagedorn C, Ellender RD, Gooch J, Kern J, Samadpour M, Chapman AC, Robinson BJ, Thompson BC. J Water Health; 2003 Dec; 1(4):153-66. PubMed ID: 15382721 [Abstract] [Full Text] [Related]
17. Microbial source tracking by DNA sequence analysis of the Escherichia coli malate dehydrogenase gene. Ivanetich KM, Hsu PH, Wunderlich KM, Messenger E, Walkup WG, Scott TM, Lukasik J, Davis J. J Microbiol Methods; 2006 Dec; 67(3):507-26. PubMed ID: 16973226 [Abstract] [Full Text] [Related]
18. Wildlife identified as major source of Escherichia coli in agriculturally dominated watersheds by BOX A1R-derived genetic fingerprints. Somarelli JA, Makarewicz JC, Sia R, Simon R. J Environ Manage; 2007 Jan; 82(1):60-5. PubMed ID: 16551490 [Abstract] [Full Text] [Related]
19. Fidelity of bacterial source tracking: Escherichia coli vs Enterococcus spp and minimizing assignment of isolates from nonlibrary sources. Hassan WM, Ellender RD, Wang SY. J Appl Microbiol; 2007 Feb; 102(2):591-8. PubMed ID: 17241366 [Abstract] [Full Text] [Related]
20. Differentiation of faecal Escherichia coli from humans and animals by multiple antibiotic resistance analysis. Vantarakis A, Venieri D, Komninou G, Papapetropoulou M. Lett Appl Microbiol; 2006 Jan; 42(1):71-7. PubMed ID: 16411923 [Abstract] [Full Text] [Related] Page: [Next] [New Search]