These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
536 related items for PubMed ID: 17651216
1. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Hou J, Shen Y, Li XP, Bao XM. Lett Appl Microbiol; 2007 Aug; 45(2):184-9. PubMed ID: 17651216 [Abstract] [Full Text] [Related]
2. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Matsushika A, Watanabe S, Kodaki T, Makino K, Inoue H, Murakami K, Takimura O, Sawayama S. Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695 [Abstract] [Full Text] [Related]
3. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Krahulec S, Klimacek M, Nidetzky B. Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479 [Abstract] [Full Text] [Related]
4. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Almeida JR, Bertilsson M, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF. Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862 [Abstract] [Full Text] [Related]
9. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Karhumaa K, Fromanger R, Hahn-Hägerdal B, Gorwa-Grauslund MF. Appl Microbiol Biotechnol; 2007 Jan 30; 73(5):1039-46. PubMed ID: 16977466 [Abstract] [Full Text] [Related]
10. Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes. Bao X, Gao D, Qu Y, Wang Z, Walfridssion M, Hahn-Hagerbal B. Chin J Biotechnol; 1997 Jan 30; 13(4):225-31. PubMed ID: 9631257 [Abstract] [Full Text] [Related]
11. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Jeppsson M, Bengtsson O, Franke K, Lee H, Hahn-Hägerdal B, Gorwa-Grauslund MF. Biotechnol Bioeng; 2006 Mar 05; 93(4):665-73. PubMed ID: 16372361 [Abstract] [Full Text] [Related]
12. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. Watanabe S, Kodaki T, Makino K. J Biol Chem; 2005 Mar 18; 280(11):10340-9. PubMed ID: 15623532 [Abstract] [Full Text] [Related]
17. A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. Bera AK, Ho NW, Khan A, Sedlak M. J Ind Microbiol Biotechnol; 2011 May 18; 38(5):617-26. PubMed ID: 20714780 [Abstract] [Full Text] [Related]
19. Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. Krahulec S, Klimacek M, Nidetzky B. J Biotechnol; 2012 Apr 30; 158(4):192-202. PubMed ID: 21903144 [Abstract] [Full Text] [Related]
20. Expression of bifunctional enzymes with xylose reductase and xylitol dehydrogenase activity in Saccharomyces cerevisiae alters product formation during xylose fermentation. Anderlund M, Rådström P, Hahn-Hägerdal B. Metab Eng; 2001 Jul 30; 3(3):226-35. PubMed ID: 11461145 [Abstract] [Full Text] [Related] Page: [Next] [New Search]