These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


217 related items for PubMed ID: 17653342

  • 1. Bio-chip for spatially controlled transfection of nucleic acid payloads into cells in a culture.
    Jain T, Muthuswamy J.
    Lab Chip; 2007 Aug; 7(8):1004-11. PubMed ID: 17653342
    [Abstract] [Full Text] [Related]

  • 2. Microsystem for transfection of exogenous molecules with spatio-temporal control into adherent cells.
    Jain T, Muthuswamy J.
    Biosens Bioelectron; 2007 Jan 15; 22(6):863-70. PubMed ID: 16635569
    [Abstract] [Full Text] [Related]

  • 3. Microelectrode array (MEA) platform for targeted neuronal transfection and recording.
    Jain T, Muthuswamy J.
    IEEE Trans Biomed Eng; 2008 Feb 15; 55(2 Pt 2):827-32. PubMed ID: 18270028
    [Abstract] [Full Text] [Related]

  • 4. An easy protocol for on-chip transfection of COS-7 cells with a cationic lipid-based reagent.
    Li L, Nie Y, Ye D, Cai G.
    Lab Chip; 2009 Aug 07; 9(15):2230-3. PubMed ID: 19606301
    [Abstract] [Full Text] [Related]

  • 5. An efficient and high-throughput electroporation microchip applicable for siRNA delivery.
    Huang H, Wei Z, Huang Y, Zhao D, Zheng L, Cai T, Wu M, Wang W, Ding X, Zhou Z, Du Q, Li Z, Liang Z.
    Lab Chip; 2011 Jan 07; 11(1):163-72. PubMed ID: 20957267
    [Abstract] [Full Text] [Related]

  • 6. Transfer of small interfering RNA by single-cell electroporation in cerebellar cell cultures.
    Tanaka M, Yanagawa Y, Hirashima N.
    J Neurosci Methods; 2009 Mar 30; 178(1):80-6. PubMed ID: 19114056
    [Abstract] [Full Text] [Related]

  • 7. Single cell electroporation using microfluidic devices.
    Le Gac S, van den Berg A.
    Methods Mol Biol; 2012 Mar 30; 853():65-82. PubMed ID: 22323141
    [Abstract] [Full Text] [Related]

  • 8. Plasmid DNA and siRNA transfection of intestinal epithelial monolayers by electroporation.
    Ghartey-Tagoe EB, Babbin BA, Nusrat A, Neish AS, Prausnitz MR.
    Int J Pharm; 2006 Jun 06; 315(1-2):122-33. PubMed ID: 16564652
    [Abstract] [Full Text] [Related]

  • 9. Microfluidic electroporation for delivery of small molecules and genes into cells using a common DC power supply.
    Wang HY, Lu C.
    Biotechnol Bioeng; 2008 Jun 15; 100(3):579-86. PubMed ID: 18183631
    [Abstract] [Full Text] [Related]

  • 10. Single-cell electroporation of adult sensory neurons for gene screening with RNA interference mechanism.
    Boudes M, Pieraut S, Valmier J, Carroll P, Scamps F.
    J Neurosci Methods; 2008 May 30; 170(2):204-11. PubMed ID: 18314198
    [Abstract] [Full Text] [Related]

  • 11. Gene delivery in three-dimensional cell cultures by superparamagnetic nanoparticles.
    Zhang H, Lee MY, Hogg MG, Dordick JS, Sharfstein ST.
    ACS Nano; 2010 Aug 24; 4(8):4733-43. PubMed ID: 20731451
    [Abstract] [Full Text] [Related]

  • 12. High efficiency, site-specific transfection of adherent cells with siRNA using microelectrode arrays (MEA).
    Patel C, Muthuswamy J.
    J Vis Exp; 2012 Sep 13; (67):e4415. PubMed ID: 23007885
    [Abstract] [Full Text] [Related]

  • 13. Electrotransfection of mammalian cells using microchannel-type electroporation chip.
    Shin YS, Cho K, Kim JK, Lim SH, Park CH, Lee KB, Park Y, Chung C, Han DC, Chang JK.
    Anal Chem; 2004 Dec 01; 76(23):7045-52. PubMed ID: 15571358
    [Abstract] [Full Text] [Related]

  • 14. Electroporation of mammalian cells in a microfluidic channel with geometric variation.
    Wang HY, Lu C.
    Anal Chem; 2006 Jul 15; 78(14):5158-64. PubMed ID: 16841942
    [Abstract] [Full Text] [Related]

  • 15. Highly efficient reverse transfection with siRNA in multiple wells of microtiter plates.
    Fujita S, Ota E, Sasaki C, Takano K, Miyake M, Miyake J.
    J Biosci Bioeng; 2007 Oct 15; 104(4):329-33. PubMed ID: 18023808
    [Abstract] [Full Text] [Related]

  • 16. Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device.
    Valero A, Post JN, van Nieuwkasteele JW, Ter Braak PM, Kruijer W, van den Berg A.
    Lab Chip; 2008 Jan 15; 8(1):62-7. PubMed ID: 18094762
    [Abstract] [Full Text] [Related]

  • 17. Space and time-resolved gene expression experiments on cultured mammalian cells by a single-cell electroporation microarray.
    Vassanelli S, Bandiera L, Borgo M, Cellere G, Santoni L, Bersani C, Salamon M, Zaccolo M, Lorenzelli L, Girardi S, Maschietto M, Dal Maschio M, Paccagnella A.
    N Biotechnol; 2008 Jun 15; 25(1):55-67. PubMed ID: 18504020
    [Abstract] [Full Text] [Related]

  • 18. Small interfering RNA (siRNA) delivery into murine bone marrow-derived dendritic cells by electroporation.
    Jantsch J, Turza N, Volke M, Eckardt KU, Hensel M, Steinkasserer A, Willam C, Prechtel AT.
    J Immunol Methods; 2008 Aug 20; 337(1):71-7. PubMed ID: 18514219
    [Abstract] [Full Text] [Related]

  • 19. Continuous cell electroporation for efficient DNA and siRNA delivery based on laminar microfluidic chips.
    Wei Z, Li Z.
    Methods Mol Biol; 2014 Aug 20; 1121():99-110. PubMed ID: 24510815
    [Abstract] [Full Text] [Related]

  • 20. Electroporation of human embryonic stem cells: Small and macromolecule loading and DNA transfection.
    Mohr JC, de Pablo JJ, Palecek SP.
    Biotechnol Prog; 2006 Aug 20; 22(3):825-34. PubMed ID: 16739967
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.