These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Assessment of cadmium bioaccessibility to predict its bioavailability in contaminated soils. Li SW, Sun HJ, Li HB, Luo J, Ma LQ. Environ Int; 2016 Sep; 94():600-606. PubMed ID: 27346741 [Abstract] [Full Text] [Related]
27. Comparison of arsenic bioaccessibility in housedust and contaminated soils based on four in vitro assays. Li HB, Li J, Zhu YG, Juhasz AL, Ma LQ. Sci Total Environ; 2015 Nov 01; 532():803-11. PubMed ID: 26136157 [Abstract] [Full Text] [Related]
28. Arsenic in Playground Soils from Kindergartens and Green Recreational Areas of Bratislava City (Slovakia): Occurrence and Gastric Bioaccessibility. Hiller E, Filová L, Jurkovič Ľ, Lachká L, Kulikova T, Šimurková M. Arch Environ Contam Toxicol; 2018 Oct 01; 75(3):402-414. PubMed ID: 29770841 [Abstract] [Full Text] [Related]
29. Relative oral bioavailability of arsenic from contaminated soils measured in the cynomolgus monkey. Roberts SM, Munson JW, Lowney YW, Ruby MV. Toxicol Sci; 2007 Jan 01; 95(1):281-8. PubMed ID: 17005634 [Abstract] [Full Text] [Related]
30. Assessment of bioaccessibility and exposure risk of arsenic and lead in urban soils of Guangzhou City, China. Lu Y, Yin W, Huang L, Zhang G, Zhao Y. Environ Geochem Health; 2011 Apr 01; 33(2):93-102. PubMed ID: 20524051 [Abstract] [Full Text] [Related]
32. Adsorption, oxidation, and bioaccessibility of As(III) in soils. Yang JK, Barnett MO, Zhuang J, Fendorf SE, Jardine PM. Environ Sci Technol; 2005 Sep 15; 39(18):7102-10. PubMed ID: 16201635 [Abstract] [Full Text] [Related]
33. In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Denys S, Caboche J, Tack K, Rychen G, Wragg J, Cave M, Jondreville C, Feidt C. Environ Sci Technol; 2012 Jun 05; 46(11):6252-60. PubMed ID: 22606949 [Abstract] [Full Text] [Related]
36. Innovative accumulative risk assessment of co-exposure to Cd, As, and Pb in contaminated rice based on their in vivo bioavailability and in vitro bioaccessibility. Xiao W, Yang Y, Tang N, Huang X, Zhang Q, Zhao S, Chen D, Guo B, Zhao Z, Jiang Y, Ye X. Sci Total Environ; 2024 Feb 20; 912():168922. PubMed ID: 38030010 [Abstract] [Full Text] [Related]
37. Mouse assay for determination of arsenic bioavailability in contaminated soils. Bradham KD, Diamond GL, Scheckel KG, Hughes MF, Casteel SW, Miller BW, Klotzbach JM, Thayer WC, Thomas DJ. J Toxicol Environ Health A; 2013 Feb 20; 76(13):815-26. PubMed ID: 24028666 [Abstract] [Full Text] [Related]
38. A review of laboratory results for bioaccessibility values of arsenic, lead and nickel in contaminated UK soils. Saikat S, Barnes B, Westwood D. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul 15; 42(9):1213-21. PubMed ID: 17654141 [Abstract] [Full Text] [Related]
40. Effects of arsenic and cadmium on bioaccessibility of lead in spiked soils assessed by Unified BARGE Method. Xia Q, Peng C, Lamb D, Kader M, Mallavarapu M, Naidu R, Ng JC. Chemosphere; 2016 Jul 15; 154():343-349. PubMed ID: 27062001 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]