These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


178 related items for PubMed ID: 17655338

  • 1. Micro-BLMs on highly ordered porous silicon substrates: rupture process and lateral mobility.
    Weiskopf D, Schmitt EK, Klühr MH, Dertinger SK, Steinem C.
    Langmuir; 2007 Aug 28; 23(18):9134-9. PubMed ID: 17655338
    [Abstract] [Full Text] [Related]

  • 2. Channel activity of a viral transmembrane peptide in micro-BLMs: Vpu(1-32) from HIV-1.
    Römer W, Lam YH, Fischer D, Watts A, Fischer WB, Göring P, Wehrspohn RB, Gösele U, Steinem C.
    J Am Chem Soc; 2004 Dec 15; 126(49):16267-74. PubMed ID: 15584764
    [Abstract] [Full Text] [Related]

  • 3. Imaging and patterning of pore-suspending membranes with scanning ion conductance microscopy.
    Böcker M, Muschter S, Schmitt EK, Steinem C, Schäffer TE.
    Langmuir; 2009 Mar 03; 25(5):3022-8. PubMed ID: 19437710
    [Abstract] [Full Text] [Related]

  • 4. Photocurrents generated by bacteriorhodopsin adsorbed on nano-black lipid membranes.
    Horn C, Steinem C.
    Biophys J; 2005 Aug 03; 89(2):1046-54. PubMed ID: 15908580
    [Abstract] [Full Text] [Related]

  • 5. Local membrane mechanics of pore-spanning bilayers.
    Mey I, Stephan M, Schmitt EK, Müller MM, Ben Amar M, Steinem C, Janshoff A.
    J Am Chem Soc; 2009 May 27; 131(20):7031-9. PubMed ID: 19453196
    [Abstract] [Full Text] [Related]

  • 6. Impedance analysis and single-channel recordings on nano-black lipid membranes based on porous alumina.
    Römer W, Steinem C.
    Biophys J; 2004 Feb 27; 86(2):955-65. PubMed ID: 14747331
    [Abstract] [Full Text] [Related]

  • 7. Impedance analysis of valinomycin activity in nano-BLMs.
    Kepplinger C, Höfer I, Steinem C.
    Chem Phys Lipids; 2009 Aug 27; 160(2):109-13. PubMed ID: 19446541
    [Abstract] [Full Text] [Related]

  • 8. Microporous silicon and biosensor development: structural analysis, electrical characterisation and biocapacity evaluation.
    Lillis B, Jungk C, Iacopino D, Whelton A, Hurley E, Sheehan MM, Splinter A, Quinn A, Redmond G, Lane WA, Mathewson A, Berney H.
    Biosens Bioelectron; 2005 Aug 15; 21(2):282-92. PubMed ID: 16023955
    [Abstract] [Full Text] [Related]

  • 9. Fluid biomembranes supported on nanoporous aerogel/xerogel substrates.
    Weng KC, Stålgren JJ, Duval DJ, Risbud SH, Frank CW.
    Langmuir; 2004 Aug 17; 20(17):7232-9. PubMed ID: 15301510
    [Abstract] [Full Text] [Related]

  • 10. Continuous planar phospholipid bilayer supported on porous silicon thin film reflector.
    Cunin F, Milhiet PE, Anglin E, Sailor MJ, Espenel C, Le Grimellec C, Brunel D, Devoisselle JM.
    Ultramicroscopy; 2007 Oct 17; 107(10-11):1048-52. PubMed ID: 17600623
    [Abstract] [Full Text] [Related]

  • 11. Nanomechanical characterization of phospholipid bilayer islands on flat and porous substrates: a force spectroscopy study.
    Nussio MR, Oncins G, Ridelis I, Szili E, Shapter JG, Sanz F, Voelcker NH.
    J Phys Chem B; 2009 Jul 30; 113(30):10339-47. PubMed ID: 19572625
    [Abstract] [Full Text] [Related]

  • 12. Phase transition of individually addressable microstructured membranes visualized by imaging ellipsometry.
    Faiss S, Schuy S, Weiskopf D, Steinem C, Janshoff A.
    J Phys Chem B; 2007 Dec 20; 111(50):13979-86. PubMed ID: 18044861
    [Abstract] [Full Text] [Related]

  • 13. Functional characterization of PorB class II porin from Neisseria meningitidis using a tethered bilayer lipid membrane.
    Jadhav SR, Zheng Y, Michael Garavito R, Mark Worden R.
    Biosens Bioelectron; 2008 Dec 01; 24(4):837-41. PubMed ID: 18722761
    [Abstract] [Full Text] [Related]

  • 14. Investigation of transmembrane protein fused in lipid bilayer membranes supported on porous silicon.
    Tantawi KH, Cerro R, Berdiev B, Martin ME, Montes FJ, Patel D, Williams JD.
    J Med Eng Technol; 2013 Jan 01; 37(1):28-34. PubMed ID: 23276154
    [Abstract] [Full Text] [Related]

  • 15. Electrochemical impedance spectroscopy and atomic force microscopic studies of electrical and mechanical properties of nano-black lipid membranes and size dependence.
    Zhu ZW, Wang Y, Zhang X, Sun CF, Li MG, Yan JW, Mao BW.
    Langmuir; 2012 Oct 16; 28(41):14739-46. PubMed ID: 22985346
    [Abstract] [Full Text] [Related]

  • 16. 3D ordered nanostructures fabricated by nanosphere lithography using an organometallic etch mask.
    Ling XY, Acikgoz C, Phang IY, Hempenius MA, Reinhoudt DN, Vancso GJ, Huskens J.
    Nanoscale; 2010 Aug 16; 2(8):1455-60. PubMed ID: 20820734
    [Abstract] [Full Text] [Related]

  • 17. Bioactive properties of nanostructured porous silicon for enhancing electrode to neuron interfaces.
    Moxon KA, Hallman S, Aslani A, Kalkhoran NM, Lelkes PI.
    J Biomater Sci Polym Ed; 2007 Aug 16; 18(10):1263-81. PubMed ID: 17939885
    [Abstract] [Full Text] [Related]

  • 18. Interaction of antibiotics with lipid vesicles on thin film porous silicon using reflectance interferometric Fourier transform spectroscopy.
    Guinan T, Godefroy C, Lautrédou N, Pace S, Milhiet PE, Voelcker N, Cunin F.
    Langmuir; 2013 Aug 13; 29(32):10279-86. PubMed ID: 23844993
    [Abstract] [Full Text] [Related]

  • 19. Characterization of pore formation by streptolysin O on supported lipid membranes by impedance spectroscopy and surface plasmon resonance spectroscopy.
    Wilkop T, Xu D, Cheng Q.
    Langmuir; 2007 Jan 30; 23(3):1403-9. PubMed ID: 17241065
    [Abstract] [Full Text] [Related]

  • 20. Channel activity of OmpF monitored in nano-BLMs.
    Schmitt EK, Vrouenraets M, Steinem C.
    Biophys J; 2006 Sep 15; 91(6):2163-71. PubMed ID: 16782785
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.