These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Molecularly targeted therapy in acute myeloid leukemia. Bernasconi P, Boni M, Cavigliano PM, Calatroni S, Giardini I, Rocca B, Zappatore R, Caresana M, Quarna J. Ann N Y Acad Sci; 2004 Dec; 1028():409-22. PubMed ID: 15650266 [Abstract] [Full Text] [Related]
7. Tyrosine kinase receptors as attractive targets of cancer therapy. Bennasroune A, Gardin A, Aunis D, Crémel G, Hubert P. Crit Rev Oncol Hematol; 2004 Apr; 50(1):23-38. PubMed ID: 15094157 [Abstract] [Full Text] [Related]
8. New agents in the treatment of acute myeloid leukemia: a snapshot of signal transduction modulation. Bao T, Smith BD, Karp JE. Clin Adv Hematol Oncol; 2005 Apr; 3(4):287-96, 302. PubMed ID: 16167001 [Abstract] [Full Text] [Related]
9. FLT-3: a new focus in the understanding of acute leukemia. Markovic A, MacKenzie KL, Lock RB. Int J Biochem Cell Biol; 2005 Jun; 37(6):1168-72. PubMed ID: 15778081 [Abstract] [Full Text] [Related]
10. Molecular therapeutic approaches to acute myeloid leukemia: targeting aberrant chromatin dynamics and signal transduction. Piazza F, Semenzato G. Expert Rev Anticancer Ther; 2004 Jun; 4(3):387-400. PubMed ID: 15161438 [Abstract] [Full Text] [Related]
11. Molecular genetics of human leukemias: new insights into therapy. Gilliland DG. Semin Hematol; 2002 Oct; 39(4 Suppl 3):6-11. PubMed ID: 12447846 [Abstract] [Full Text] [Related]
12. Molecular regulation of receptor tyrosine kinases in hematopoietic malignancies. Correll PH, Paulson RF, Wei X. Gene; 2006 Jun 07; 374():26-38. PubMed ID: 16524673 [Abstract] [Full Text] [Related]
13. Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Choudhary C, Olsen JV, Brandts C, Cox J, Reddy PN, Böhmer FD, Gerke V, Schmidt-Arras DE, Berdel WE, Müller-Tidow C, Mann M, Serve H. Mol Cell; 2009 Oct 23; 36(2):326-39. PubMed ID: 19854140 [Abstract] [Full Text] [Related]
14. Oncogenic receptor tyrosine kinase in leukemia. Mizuki M, Ueda S, Matsumura I, Ishiko J, Schwäble J, Serve H, Kanakura Y. Cell Mol Biol (Noisy-le-grand); 2003 Sep 23; 49(6):907-22. PubMed ID: 14656048 [Abstract] [Full Text] [Related]
15. Receptor tyrosine kinase alterations in AML - biology and therapy. Stirewalt DL, Meshinchi S. Cancer Treat Res; 2010 Sep 23; 145():85-108. PubMed ID: 20306247 [Abstract] [Full Text] [Related]
16. FLT3 Inhibitors in the Treatment of AML. Gilliland DG. Clin Adv Hematol Oncol; 2004 Nov 23; 2(11):708-10. PubMed ID: 16163256 [No Abstract] [Full Text] [Related]
17. Targeting mutated protein tyrosine kinases and their signaling pathways in hematologic malignancies. Chalandon Y, Schwaller J. Haematologica; 2005 Jul 23; 90(7):949-68. PubMed ID: 15996933 [Abstract] [Full Text] [Related]
18. MS-275, a novel histone deacetylase inhibitor with selectivity against HDAC1, induces degradation of FLT3 via inhibition of chaperone function of heat shock protein 90 in AML cells. Nishioka C, Ikezoe T, Yang J, Takeuchi S, Koeffler HP, Yokoyama A. Leuk Res; 2008 Sep 23; 32(9):1382-92. PubMed ID: 18394702 [Abstract] [Full Text] [Related]
19. Targeting receptor tyrosine kinase signalling in small cell lung cancer (SCLC): what have we learned so far? Fischer B, Marinov M, Arcaro A. Cancer Treat Rev; 2007 Jun 23; 33(4):391-406. PubMed ID: 17368733 [Abstract] [Full Text] [Related]
20. KIT and FLT3 receptor tyrosine kinase mutations in acute myeloid leukemia with favorable cytogenetics: two novel mutations and selective occurrence in leukemia subtypes and age groups. Sritana N, Auewarakul CU. Exp Mol Pathol; 2008 Dec 23; 85(3):227-31. PubMed ID: 18977345 [Abstract] [Full Text] [Related] Page: [Next] [New Search]