These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


426 related items for PubMed ID: 17658702

  • 21. The metabolic blueprint of Phaeodactylum tricornutum reveals a eukaryotic Entner-Doudoroff glycolytic pathway.
    Fabris M, Matthijs M, Rombauts S, Vyverman W, Goossens A, Baart GJ.
    Plant J; 2012 Jun; 70(6):1004-14. PubMed ID: 22332784
    [Abstract] [Full Text] [Related]

  • 22. Comparative characterization of putative chitin deacetylases from Phaeodactylum tricornutum and Thalassiosira pseudonana highlights the potential for distinct chitin-based metabolic processes in diatoms.
    Shao Z, Thomas Y, Hembach L, Xing X, Duan D, Moerschbacher BM, Bulone V, Tirichine L, Bowler C.
    New Phytol; 2019 Mar; 221(4):1890-1905. PubMed ID: 30288745
    [Abstract] [Full Text] [Related]

  • 23. Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana.
    Tachibana M, Allen AE, Kikutani S, Endo Y, Bowler C, Matsuda Y.
    Photosynth Res; 2011 Sep; 109(1-3):205-21. PubMed ID: 21365259
    [Abstract] [Full Text] [Related]

  • 24. Potential impact of stress activated retrotransposons on genome evolution in a marine diatom.
    Maumus F, Allen AE, Mhiri C, Hu H, Jabbari K, Vardi A, Grandbastien MA, Bowler C.
    BMC Genomics; 2009 Dec 22; 10():624. PubMed ID: 20028555
    [Abstract] [Full Text] [Related]

  • 25. Nuclear transformation of the diatom Phaeodactylum tricornutum using PCR-amplified DNA fragments by microparticle bombardment.
    Kira N, Ohnishi K, Miyagawa-Yamaguchi A, Kadono T, Adachi M.
    Mar Genomics; 2016 Feb 22; 25():49-56. PubMed ID: 26711090
    [Abstract] [Full Text] [Related]

  • 26. Genome Annotation of a Model Diatom Phaeodactylum tricornutum Using an Integrated Proteogenomic Pipeline.
    Yang M, Lin X, Liu X, Zhang J, Ge F.
    Mol Plant; 2018 Oct 08; 11(10):1292-1307. PubMed ID: 30176371
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. An Expanded Plasmid-Based Genetic Toolbox Enables Cas9 Genome Editing and Stable Maintenance of Synthetic Pathways in Phaeodactylum tricornutum.
    Slattery SS, Diamond A, Wang H, Therrien JA, Lant JT, Jazey T, Lee K, Klassen Z, Desgagné-Penix I, Karas BJ, Edgell DR.
    ACS Synth Biol; 2018 Feb 16; 7(2):328-338. PubMed ID: 29298053
    [Abstract] [Full Text] [Related]

  • 29. Annotation and expression profile analysis of cDNas from the Antarctic diatom Chaetoceros neogracile.
    Jung G, Lee CG, Kang SH, Jin E.
    J Microbiol Biotechnol; 2007 Aug 16; 17(8):1330-7. PubMed ID: 18051602
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Diatomics: toward diatom functional genomics.
    Montsant A, Maheswari U, Bowler C, Lopez PJ.
    J Nanosci Nanotechnol; 2005 Jan 16; 5(1):5-14. PubMed ID: 15762155
    [Abstract] [Full Text] [Related]

  • 32. Development of new tools for studying gene function in fungi based on the Gateway system.
    Shafran H, Miyara I, Eshed R, Prusky D, Sherman A.
    Fungal Genet Biol; 2008 Aug 16; 45(8):1147-54. PubMed ID: 18550398
    [Abstract] [Full Text] [Related]

  • 33. Reciprocal fusions of two genes in the formaldehyde detoxification pathway in ciliates and diatoms.
    Stover NA, Cavalcanti AR, Li AJ, Richardson BC, Landweber LF.
    Mol Biol Evol; 2005 Jul 16; 22(7):1539-42. PubMed ID: 15858209
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Isolation and characterization of a gene encoding a S-adenosyl-l-methionine-dependent halide/thiol methyltransferase (HTMT) from the marine diatom Phaeodactylum tricornutum: Biogenic mechanism of CH(3)I emissions in oceans.
    Toda H, Itoh N.
    Phytochemistry; 2011 Apr 16; 72(4-5):337-43. PubMed ID: 21227473
    [Abstract] [Full Text] [Related]

  • 36. Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: comparison with other plastid genomes of the red lineage.
    Oudot-Le Secq MP, Grimwood J, Shapiro H, Armbrust EV, Bowler C, Green BR.
    Mol Genet Genomics; 2007 Apr 16; 277(4):427-39. PubMed ID: 17252281
    [Abstract] [Full Text] [Related]

  • 37. Phaeodactylum tricornutum: An established model species for diatom molecular research and an emerging chassis for algal synthetic biology.
    Russo MT, Rogato A, Jaubert M, Karas BJ, Falciatore A.
    J Phycol; 2023 Dec 16; 59(6):1114-1122. PubMed ID: 37975560
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 22.