These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
149 related items for PubMed ID: 17661523
1. Sn(78)Ge(22)@carbon core-shell nanowires as fast and high-capacity lithium storage media. Lee H, Cho J. Nano Lett; 2007 Sep; 7(9):2638-41. PubMed ID: 17661523 [Abstract] [Full Text] [Related]
2. Highly conductive coaxial SnO(2)-In(2)O(3) heterostructured nanowires for Li ion battery electrodes. Kim DW, Hwang IS, Kwon SJ, Kang HY, Park KS, Choi YJ, Choi KJ, Park JG. Nano Lett; 2007 Oct; 7(10):3041-5. PubMed ID: 17760477 [Abstract] [Full Text] [Related]
3. Doping-dependent electrical characteristics of SnO2 nanowires. Wan Q, Dattoli E, Lu W. Small; 2008 Apr; 4(4):451-4. PubMed ID: 18383191 [No Abstract] [Full Text] [Related]
4. Significant reduction of thermal conductivity in Si/Ge core-shell nanowires. Hu M, Giapis KP, Goicochea JV, Zhang X, Poulikakos D. Nano Lett; 2011 Feb 09; 11(2):618-23. PubMed ID: 21141989 [Abstract] [Full Text] [Related]
5. A novel type of Ge nanotube arrays for lithium storage material. Ling S, Cui Z, She G, Guo X, Mu L, Shi W. J Nanosci Nanotechnol; 2012 Jan 09; 12(1):213-7. PubMed ID: 22523968 [Abstract] [Full Text] [Related]
6. Alkanethiol-passivated ge nanowires as high-performance anode materials for lithium-ion batteries: the role of chemical surface functionalization. Yuan FW, Yang HJ, Tuan HY. ACS Nano; 2012 Nov 27; 6(11):9932-42. PubMed ID: 23043347 [Abstract] [Full Text] [Related]
7. Band-offset driven efficiency of the doping of SiGe core-shell nanowires. Amato M, Ossicini S, Rurali R. Nano Lett; 2011 Feb 09; 11(2):594-8. PubMed ID: 21188962 [Abstract] [Full Text] [Related]
8. Synthesis and characterization of germanium oxide nanowires. Kalyanikutty KP, Gundiah G, Govindaraj A, Rao CN. J Nanosci Nanotechnol; 2005 Mar 09; 5(3):421-4. PubMed ID: 15913249 [Abstract] [Full Text] [Related]
9. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Cui LF, Yang Y, Hsu CM, Cui Y. Nano Lett; 2009 Sep 09; 9(9):3370-4. PubMed ID: 19655765 [Abstract] [Full Text] [Related]
11. Characterization of impurity doping and stress in Si/Ge and Ge/Si core-shell nanowires. Fukata N, Mitome M, Sekiguchi T, Bando Y, Kirkham M, Hong JI, Wang ZL, Snyder RL. ACS Nano; 2012 Oct 23; 6(10):8887-95. PubMed ID: 22947081 [Abstract] [Full Text] [Related]
12. Temperature-dependent growth direction of ultrathin ZnSe nanowires. Cai Y, Chan SK, Sou IK, Chan YF, Su DS, Wang N. Small; 2007 Jan 23; 3(1):111-5. PubMed ID: 17294480 [No Abstract] [Full Text] [Related]
13. Facile approach to prepare porous CaSnO₃ nanotubes via a single spinneret electrospinning technique as anodes for lithium ion batteries. Li L, Peng S, Wang J, Cheah YL, Teh P, Ko Y, Wong C, Srinivasan M. ACS Appl Mater Interfaces; 2012 Nov 23; 4(11):6005-12. PubMed ID: 23075378 [Abstract] [Full Text] [Related]
14. Vertically oriented germanium nanowires grown from gold colloids on silicon substrates and subsequent gold removal. Woodruff JH, Ratchford JB, Goldthorpe IA, McIntyre PC, Chidsey CE. Nano Lett; 2007 Jun 23; 7(6):1637-42. PubMed ID: 17530912 [Abstract] [Full Text] [Related]
15. A generic approach for embedded catalyst-supported vertically aligned nanowire growth. Chung HS, Jung Y, Zimmerman TJ, Lee SH, Kim JW, Lee SH, Kim SC, Oh KH, Agarwal R. Nano Lett; 2008 May 23; 8(5):1328-34. PubMed ID: 18363342 [Abstract] [Full Text] [Related]
17. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Cui LF, Ruffo R, Chan CK, Peng H, Cui Y. Nano Lett; 2009 Jan 23; 9(1):491-5. PubMed ID: 19105648 [Abstract] [Full Text] [Related]
18. Four-layer tin-carbon nanotube yolk-shell materials for high-performance lithium-ion batteries. Chen P, Wu F, Wang Y. ChemSusChem; 2014 May 23; 7(5):1407-14. PubMed ID: 24648261 [Abstract] [Full Text] [Related]
19. Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices. O'Dwyer C, Szachowicz M, Visimberga G, Lavayen V, Newcomb SB, Torres CM. Nat Nanotechnol; 2009 Apr 23; 4(4):239-44. PubMed ID: 19350034 [Abstract] [Full Text] [Related]
20. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Shi Y, Guo B, Corr SA, Shi Q, Hu YS, Heier KR, Chen L, Seshadri R, Stucky GD. Nano Lett; 2009 Dec 23; 9(12):4215-20. PubMed ID: 19775084 [Abstract] [Full Text] [Related] Page: [Next] [New Search]