These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


318 related items for PubMed ID: 17661755

  • 1. The effect of temperature on C(4)-type leaf photosynthesis parameters.
    Massad RS, Tuzet A, Bethenod O.
    Plant Cell Environ; 2007 Sep; 30(9):1191-204. PubMed ID: 17661755
    [Abstract] [Full Text] [Related]

  • 2. Seasonal change in the balance between capacities of RuBP carboxylation and RuBP regeneration affects CO2 response of photosynthesis in Polygonum cuspidatum.
    Onoda Y, Hikosaka K, Hirose T.
    J Exp Bot; 2005 Feb; 56(412):755-63. PubMed ID: 15596479
    [Abstract] [Full Text] [Related]

  • 3. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy.
    Yin X, Struik PC, Romero P, Harbinson J, Evers JB, VAN DER Putten PE, Vos J.
    Plant Cell Environ; 2009 May; 32(5):448-64. PubMed ID: 19183300
    [Abstract] [Full Text] [Related]

  • 4. Temperature response of photosynthesis and internal conductance to CO2: results from two independent approaches.
    Warren CR, Dreyer E.
    J Exp Bot; 2006 May; 57(12):3057-67. PubMed ID: 16882645
    [Abstract] [Full Text] [Related]

  • 5. Major diffusion leaks of clamp-on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar et al. model parameters?
    Rodeghiero M, Niinemets U, Cescatti A.
    Plant Cell Environ; 2007 Aug; 30(8):1006-22. PubMed ID: 17617828
    [Abstract] [Full Text] [Related]

  • 6. Growth in elevated CO2 enhances temperature response of photosynthesis in wheat.
    Alonso A, Pérez P, Martínez-Carrasco R.
    Physiol Plant; 2009 Feb; 135(2):109-20. PubMed ID: 19055543
    [Abstract] [Full Text] [Related]

  • 7. Spatial variation in photosynthetic CO(2) carbon and oxygen isotope discrimination along leaves of the monocot triticale (Triticum × Secale) relates to mesophyll conductance and the Péclet effect.
    Kodama N, Cousins A, Tu KP, Barbour MM.
    Plant Cell Environ; 2011 Sep; 34(9):1548-62. PubMed ID: 21707646
    [Abstract] [Full Text] [Related]

  • 8. A/C(i) curve analysis across a range of woody plant species: influence of regression analysis parameters and mesophyll conductance.
    Manter DK, Kerrigan J.
    J Exp Bot; 2004 Dec; 55(408):2581-8. PubMed ID: 15501912
    [Abstract] [Full Text] [Related]

  • 9. A hierarchical Bayesian approach for estimation of photosynthetic parameters of C(3) plants.
    Patrick LD, Ogle K, Tissue DT.
    Plant Cell Environ; 2009 Dec; 32(12):1695-709. PubMed ID: 19671098
    [Abstract] [Full Text] [Related]

  • 10. Thermal acclimation of photosynthesis in black spruce [Picea mariana (Mill.) B.S.P.].
    Way DA, Sage RF.
    Plant Cell Environ; 2008 Sep; 31(9):1250-62. PubMed ID: 18532986
    [Abstract] [Full Text] [Related]

  • 11. Fitting photosynthetic carbon dioxide response curves for C(3) leaves.
    Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL.
    Plant Cell Environ; 2007 Sep; 30(9):1035-40. PubMed ID: 17661745
    [Abstract] [Full Text] [Related]

  • 12. The rate-limiting step for CO(2) assimilation at different temperatures is influenced by the leaf nitrogen content in several C(3) crop species.
    Yamori W, Nagai T, Makino A.
    Plant Cell Environ; 2011 May; 34(5):764-77. PubMed ID: 21241332
    [Abstract] [Full Text] [Related]

  • 13. Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field.
    Niinemets U, Díaz-Espejo A, Flexas J, Galmés J, Warren CR.
    J Exp Bot; 2009 May; 60(8):2271-82. PubMed ID: 19305021
    [Abstract] [Full Text] [Related]

  • 14. Can the cold tolerance of C4 photosynthesis in Miscanthus x giganteus relative to Zea mays be explained by differences in activities and thermal properties of Rubisco?
    Wang D, Naidu SL, Portis AR, Moose SP, Long SP.
    J Exp Bot; 2008 May; 59(7):1779-87. PubMed ID: 18503044
    [Abstract] [Full Text] [Related]

  • 15. The impact of ozone on juvenile maize (Zea mays L.) plant photosynthesis: effects on vegetative biomass, pigmentation, and carboxylases (PEPc and Rubisco).
    Leitao L, Bethenod O, Biolley JP.
    Plant Biol (Stuttg); 2007 Jul; 9(4):478-88. PubMed ID: 17401809
    [Abstract] [Full Text] [Related]

  • 16. Estimation of parameters of a biochemically based model of photosynthesis using a genetic algorithm.
    Su Y, Zhu G, Miao Z, Feng Q, Chang Z.
    Plant Cell Environ; 2009 Dec; 32(12):1710-23. PubMed ID: 19703116
    [Abstract] [Full Text] [Related]

  • 17. Effects of growth and measurement light intensities on temperature dependence of CO(2) assimilation rate in tobacco leaves.
    Yamori W, Evans JR, Von Caemmerer S.
    Plant Cell Environ; 2010 Mar; 33(3):332-43. PubMed ID: 19895395
    [Abstract] [Full Text] [Related]

  • 18. The temperature response of C(3) and C(4) photosynthesis.
    Sage RF, Kubien DS.
    Plant Cell Environ; 2007 Sep; 30(9):1086-106. PubMed ID: 17661749
    [Abstract] [Full Text] [Related]

  • 19. Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species.
    Kattge J, Knorr W.
    Plant Cell Environ; 2007 Sep; 30(9):1176-90. PubMed ID: 17661754
    [Abstract] [Full Text] [Related]

  • 20. Cold-tolerant crop species have greater temperature homeostasis of leaf respiration and photosynthesis than cold-sensitive species.
    Yamori W, Noguchi K, Hikosaka K, Terashima I.
    Plant Cell Physiol; 2009 Feb; 50(2):203-15. PubMed ID: 19054809
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.