These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
868 related items for PubMed ID: 17671328
1. Artificial annelid robot driven by soft actuators. Jung K, Koo JC, Nam JD, Lee YK, Choi HR. Bioinspir Biomim; 2007 Jun; 2(2):S42-9. PubMed ID: 17671328 [Abstract] [Full Text] [Related]
2. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator. Kim SH, Shin K, Hashi S, Ishiyama K. Bioinspir Biomim; 2012 Sep; 7(3):036007. PubMed ID: 22550128 [Abstract] [Full Text] [Related]
3. Bioinspired actuation of the eyeballs of an android robotic face: concept and preliminary investigations. Carpi F, De Rossi D. Bioinspir Biomim; 2007 Jun; 2(2):S50-63. PubMed ID: 17671329 [Abstract] [Full Text] [Related]
4. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems. Asnafi A, Mahzoon M. Bioinspir Biomim; 2011 Sep; 6(3):036005. PubMed ID: 21852716 [Abstract] [Full Text] [Related]
7. A micro creeping robot for colonoscopy based on the earthworm. Zuo J, Yan G, Gao Z. J Med Eng Technol; 2005 Jan 31; 29(1):1-7. PubMed ID: 15764374 [Abstract] [Full Text] [Related]
8. Development of an annelid-like peristaltic crawling soft robot using dielectric elastomer actuators. Lu X, Wang K, Hu T. Bioinspir Biomim; 2020 Jun 09; 15(4):046012. PubMed ID: 32311691 [Abstract] [Full Text] [Related]
9. Jumping robots: a biomimetic solution to locomotion across rough terrain. Armour R, Paskins K, Bowyer A, Vincent J, Megill W, Bomphrey R. Bioinspir Biomim; 2007 Sep 09; 2(3):S65-82. PubMed ID: 17848786 [Abstract] [Full Text] [Related]
11. Design of a biomimetic robotic octopus arm. Laschi C, Mazzolai B, Mattoli V, Cianchetti M, Dario P. Bioinspir Biomim; 2009 Mar 09; 4(1):015006. PubMed ID: 19258690 [Abstract] [Full Text] [Related]
12. Phase coordination and phase-velocity relationship in metameric robot locomotion. Fang H, Li S, Wang KW, Xu J. Bioinspir Biomim; 2015 Oct 29; 10(6):066006. PubMed ID: 26513696 [Abstract] [Full Text] [Related]
13. Conditions for worm-robot locomotion in a flexible environment: theory and experiments. Zarrouk D, Sharf I, Shoham M. IEEE Trans Biomed Eng; 2012 Apr 29; 59(4):1057-67. PubMed ID: 22231667 [Abstract] [Full Text] [Related]
14. An octopus-bioinspired solution to movement and manipulation for soft robots. Calisti M, Giorelli M, Levy G, Mazzolai B, Hochner B, Laschi C, Dario P. Bioinspir Biomim; 2011 Sep 29; 6(3):036002. PubMed ID: 21670493 [Abstract] [Full Text] [Related]
15. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot. Onal CD, Rus D. Bioinspir Biomim; 2013 Jun 29; 8(2):026003. PubMed ID: 23524383 [Abstract] [Full Text] [Related]
17. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators. Colorado J, Barrientos A, Rossi C, Bahlman JW, Breuer KS. Bioinspir Biomim; 2012 Sep 29; 7(3):036006. PubMed ID: 22535882 [Abstract] [Full Text] [Related]
18. Dielectric elastomer actuators for octopus inspired suction cups. Follador M, Tramacere F, Mazzolai B. Bioinspir Biomim; 2014 Sep 25; 9(4):046002. PubMed ID: 25253019 [Abstract] [Full Text] [Related]
19. Smooth transition for CPG-based body shape control of a snake-like robot. Nor NM, Ma S. Bioinspir Biomim; 2014 Mar 25; 9(1):016003. PubMed ID: 24343201 [Abstract] [Full Text] [Related]