These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


177 related items for PubMed ID: 17675065

  • 1. Upregulation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase activity increases oxidative stress in failing human heart.
    Gupte RS, Vijay V, Marks B, Levine RJ, Sabbah HN, Wolin MS, Recchia FA, Gupte SA.
    J Card Fail; 2007 Aug; 13(6):497-506. PubMed ID: 17675065
    [Abstract] [Full Text] [Related]

  • 2. Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart.
    Gupte SA, Levine RJ, Gupte RS, Young ME, Lionetti V, Labinskyy V, Floyd BC, Ojaimi C, Bellomo M, Wolin MS, Recchia FA.
    J Mol Cell Cardiol; 2006 Aug; 41(2):340-9. PubMed ID: 16828794
    [Abstract] [Full Text] [Related]

  • 3. Coronary artery superoxide production and nox isoform expression in human coronary artery disease.
    Guzik TJ, Sadowski J, Guzik B, Jopek A, Kapelak B, Przybylowski P, Wierzbicki K, Korbut R, Harrison DG, Channon KM.
    Arterioscler Thromb Vasc Biol; 2006 Feb; 26(2):333-9. PubMed ID: 16293794
    [Abstract] [Full Text] [Related]

  • 4. Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH.
    Serpillon S, Floyd BC, Gupte RS, George S, Kozicky M, Neito V, Recchia F, Stanley W, Wolin MS, Gupte SA.
    Am J Physiol Heart Circ Physiol; 2009 Jul; 297(1):H153-62. PubMed ID: 19429815
    [Abstract] [Full Text] [Related]

  • 5. Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment.
    Maack C, Kartes T, Kilter H, Schäfers HJ, Nickenig G, Böhm M, Laufs U.
    Circulation; 2003 Sep 30; 108(13):1567-74. PubMed ID: 12963641
    [Abstract] [Full Text] [Related]

  • 6. NADPH oxidase-dependent redox signaling in human heart failure: relationship between the left and right ventricle.
    Nediani C, Borchi E, Giordano C, Baruzzo S, Ponziani V, Sebastiani M, Nassi P, Mugelli A, d'Amati G, Cerbai E.
    J Mol Cell Cardiol; 2007 Apr 30; 42(4):826-34. PubMed ID: 17346742
    [Abstract] [Full Text] [Related]

  • 7. High pressure induces superoxide production in isolated arteries via protein kinase C-dependent activation of NAD(P)H oxidase.
    Ungvari Z, Csiszar A, Huang A, Kaminski PM, Wolin MS, Koller A.
    Circulation; 2003 Sep 09; 108(10):1253-8. PubMed ID: 12874194
    [Abstract] [Full Text] [Related]

  • 8. Inhibition of NADPH oxidase reduces myocardial oxidative stress and apoptosis and improves cardiac function in heart failure after myocardial infarction.
    Qin F, Simeone M, Patel R.
    Free Radic Biol Med; 2007 Jul 15; 43(2):271-81. PubMed ID: 17603936
    [Abstract] [Full Text] [Related]

  • 9. Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction.
    Doerries C, Grote K, Hilfiker-Kleiner D, Luchtefeld M, Schaefer A, Holland SM, Sorrentino S, Manes C, Schieffer B, Drexler H, Landmesser U.
    Circ Res; 2007 Mar 30; 100(6):894-903. PubMed ID: 17332431
    [Abstract] [Full Text] [Related]

  • 10. A myocardial Nox2 containing NAD(P)H oxidase contributes to oxidative stress in human atrial fibrillation.
    Kim YM, Guzik TJ, Zhang YH, Zhang MH, Kattach H, Ratnatunga C, Pillai R, Channon KM, Casadei B.
    Circ Res; 2005 Sep 30; 97(7):629-36. PubMed ID: 16123335
    [Abstract] [Full Text] [Related]

  • 11. NO-mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells.
    Duerrschmidt N, Stielow C, Muller G, Pagano PJ, Morawietz H.
    J Physiol; 2006 Oct 15; 576(Pt 2):557-67. PubMed ID: 16873416
    [Abstract] [Full Text] [Related]

  • 12. Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: role of the NADPH and xanthine oxidases.
    Dudley SC, Hoch NE, McCann LA, Honeycutt C, Diamandopoulos L, Fukai T, Harrison DG, Dikalov SI, Langberg J.
    Circulation; 2005 Aug 30; 112(9):1266-73. PubMed ID: 16129811
    [Abstract] [Full Text] [Related]

  • 13. Systemic regulation of vascular NAD(P)H oxidase activity and nox isoform expression in human arteries and veins.
    Guzik TJ, Sadowski J, Kapelak B, Jopek A, Rudzinski P, Pillai R, Korbut R, Channon KM.
    Arterioscler Thromb Vasc Biol; 2004 Sep 30; 24(9):1614-20. PubMed ID: 15256399
    [Abstract] [Full Text] [Related]

  • 14. NAD(P)H oxidase associated superoxide production in human placenta from normotensive and pre-eclamptic women.
    Raijmakers MT, Peters WH, Steegers EA, Poston L.
    Placenta; 2004 Apr 30; 25 Suppl A():S85-9. PubMed ID: 15033313
    [Abstract] [Full Text] [Related]

  • 15. Gp91phox-containing NAD(P)H oxidase increases superoxide formation by doxorubicin and NADPH.
    Deng S, Kruger A, Kleschyov AL, Kalinowski L, Daiber A, Wojnowski L.
    Free Radic Biol Med; 2007 Feb 15; 42(4):466-73. PubMed ID: 17275678
    [Abstract] [Full Text] [Related]

  • 16. NAD(P)H oxidase-induced oxidative stress in sympathetic ganglia of apolipoprotein E deficient mice.
    Ma X, Zhang HJ, Whiteis CA, Tian X, Davisson RL, Kregel KC, Abboud FM, Chapleau MW.
    Auton Neurosci; 2006 Jun 30; 126-127():285-91. PubMed ID: 16584925
    [Abstract] [Full Text] [Related]

  • 17. Insulin-stimulated NAD(P)H oxidase activity increases migration of cultured vascular smooth muscle cells.
    Yang M, Foster E, Kahn AM.
    Am J Hypertens; 2005 Oct 30; 18(10):1329-34. PubMed ID: 16202857
    [Abstract] [Full Text] [Related]

  • 18. The tyrosine phosphatase, SHP-1, is a negative regulator of endothelial superoxide formation.
    Krötz F, Engelbrecht B, Buerkle MA, Bassermann F, Bridell H, Gloe T, Duyster J, Pohl U, Sohn HY.
    J Am Coll Cardiol; 2005 May 17; 45(10):1700-6. PubMed ID: 15893190
    [Abstract] [Full Text] [Related]

  • 19. Synergistic activation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase by Src kinase elevates superoxide in type 2 diabetic, Zucker fa/fa, rat liver.
    Gupte RS, Floyd BC, Kozicky M, George S, Ungvari ZI, Neito V, Wolin MS, Gupte SA.
    Free Radic Biol Med; 2009 Aug 01; 47(3):219-28. PubMed ID: 19230846
    [Abstract] [Full Text] [Related]

  • 20. Tachycardia increases NADPH oxidase activity and RyR2 S-glutathionylation in ventricular muscle.
    Sánchez G, Pedrozo Z, Domenech RJ, Hidalgo C, Donoso P.
    J Mol Cell Cardiol; 2005 Dec 01; 39(6):982-91. PubMed ID: 16242147
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.