These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


152 related items for PubMed ID: 17677504

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Few crucial links assure checkpoint efficiency in the yeast cell-cycle network.
    Stoll G, Rougemont J, Naef F.
    Bioinformatics; 2006 Oct 15; 22(20):2539-46. PubMed ID: 16895923
    [Abstract] [Full Text] [Related]

  • 3. Function constrains network architecture and dynamics: a case study on the yeast cell cycle Boolean network.
    Lau KY, Ganguli S, Tang C.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May 15; 75(5 Pt 1):051907. PubMed ID: 17677098
    [Abstract] [Full Text] [Related]

  • 4. Robustness of Boolean dynamics under knockouts.
    Boldhaus G, Bertschinger N, Rauh J, Olbrich E, Klemm K.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug 15; 82(2 Pt 1):021916. PubMed ID: 20866846
    [Abstract] [Full Text] [Related]

  • 5. Boolean networks with veto functions.
    Ebadi H, Klemm K.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug 15; 90(2):022815. PubMed ID: 25215789
    [Abstract] [Full Text] [Related]

  • 6. Genome-wide system analysis reveals stable yet flexible network dynamics in yeast.
    Gustafsson M, Hörnquist M, Björkegren J, Tegnér J.
    IET Syst Biol; 2009 Jul 15; 3(4):219-28. PubMed ID: 19640161
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. A new framework for identifying combinatorial regulation of transcription factors: a case study of the yeast cell cycle.
    Wang J.
    J Biomed Inform; 2007 Dec 15; 40(6):707-25. PubMed ID: 17418646
    [Abstract] [Full Text] [Related]

  • 10. Characterization of degree frequency distribution in protein interaction networks.
    Romano SA, Eguia MC.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar 15; 71(3 Pt 1):031901. PubMed ID: 15903453
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Mathematical modeling of complex regulatory networks.
    Stelling J, Gilles ED.
    IEEE Trans Nanobioscience; 2004 Sep 15; 3(3):172-9. PubMed ID: 15473069
    [Abstract] [Full Text] [Related]

  • 13. Connectivity in the yeast cell cycle transcription network: inferences from neural networks.
    Hart CE, Mjolsness E, Wold BJ.
    PLoS Comput Biol; 2006 Dec 22; 2(12):e169. PubMed ID: 17194216
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Solving the influence maximization problem reveals regulatory organization of the yeast cell cycle.
    Gibbs DL, Shmulevich I.
    PLoS Comput Biol; 2017 Jun 22; 13(6):e1005591. PubMed ID: 28628618
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Computer evaluation of network dynamics models with application to cell cycle control in budding yeast.
    Allen NA, Chen KC, Shaffer CA, Tyson JJ, Watson LT.
    Syst Biol (Stevenage); 2006 Jan 22; 153(1):13-21. PubMed ID: 16983831
    [Abstract] [Full Text] [Related]

  • 18. Inferring genetic regulatory logic from expression data.
    Bulashevska S, Eils R.
    Bioinformatics; 2005 Jun 01; 21(11):2706-13. PubMed ID: 15784747
    [Abstract] [Full Text] [Related]

  • 19. Robustness and adaptation reveal plausible cell cycle controlling subnetwork in Saccharomyces cerevisiae.
    Huang JY, Huang CW, Kao KC, Lai PY.
    Gene; 2013 Apr 10; 518(1):35-41. PubMed ID: 23274654
    [Abstract] [Full Text] [Related]

  • 20. Dynamics of the cell-cycle network under genome-rewiring perturbations.
    Katzir Y, Elhanati Y, Averbukh I, Braun E.
    Phys Biol; 2013 Dec 10; 10(6):066001. PubMed ID: 24162518
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.