These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


270 related items for PubMed ID: 17680680

  • 1. Particle-tethered NADH for production of methanol from CO(2) catalyzed by coimmobilized enzymes.
    El-Zahab B, Donnelly D, Wang P.
    Biotechnol Bioeng; 2008 Feb 15; 99(3):508-14. PubMed ID: 17680680
    [Abstract] [Full Text] [Related]

  • 2. Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes.
    Ji X, Su Z, Wang P, Ma G, Zhang S.
    ACS Nano; 2015 Feb 15; 9(4):4600-10. PubMed ID: 25857747
    [Abstract] [Full Text] [Related]

  • 3. Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO2 to methanol.
    Luo J, Meyer AS, Mateiu RV, Pinelo M.
    N Biotechnol; 2015 May 25; 32(3):319-27. PubMed ID: 25698375
    [Abstract] [Full Text] [Related]

  • 4. Enabling multienzyme biocatalysis using nanoporous materials.
    El-Zahab B, Jia H, Wang P.
    Biotechnol Bioeng; 2004 Jul 20; 87(2):178-83. PubMed ID: 15236246
    [Abstract] [Full Text] [Related]

  • 5. Nanotube-supported bioproduction of 4-hydroxy-2-butanone via in situ cofactor regeneration.
    Wang L, Zhang H, Ching CB, Chen Y, Jiang R.
    Appl Microbiol Biotechnol; 2012 Jun 20; 94(5):1233-41. PubMed ID: 22116631
    [Abstract] [Full Text] [Related]

  • 6. Biotransformation of R-2-hydroxy-4-phenylbutyric acid by D-lactate dehydrogenase and Candida boidinii cells containing formate dehydrogenase coimmobilized in a fibrous bed bioreactor.
    Bai Y, Yang ST.
    Biotechnol Bioeng; 2005 Oct 20; 92(2):137-46. PubMed ID: 16037987
    [Abstract] [Full Text] [Related]

  • 7. Effect of molecular mobility on coupled enzymatic reactions involving cofactor regeneration using nanoparticle-attached enzymes.
    Zheng M, Zhang S, Ma G, Wang P.
    J Biotechnol; 2011 Jul 20; 154(4):274-80. PubMed ID: 21684312
    [Abstract] [Full Text] [Related]

  • 8. Simultaneous production of 1,3-dihydroxyacetone and xylitol from glycerol and xylose using a nanoparticle-supported multi-enzyme system with in situ cofactor regeneration.
    Zhang Y, Gao F, Zhang SP, Su ZG, Ma GH, Wang P.
    Bioresour Technol; 2011 Jan 20; 102(2):1837-43. PubMed ID: 20947342
    [Abstract] [Full Text] [Related]

  • 9. Stability and reactivity of liposome-encapsulated formate dehydrogenase and cofactor system in carbon dioxide gas-liquid flow.
    Yoshimoto M, Yamashita T, Yamashiro T.
    Biotechnol Prog; 2010 Jan 20; 26(4):1047-53. PubMed ID: 20730761
    [Abstract] [Full Text] [Related]

  • 10. Magnetic field intensified bi-enzyme system with in situ cofactor regeneration supported by magnetic nanoparticles.
    Zheng M, Su Z, Ji X, Ma G, Wang P, Zhang S.
    J Biotechnol; 2013 Oct 20; 168(2):212-7. PubMed ID: 23756150
    [Abstract] [Full Text] [Related]

  • 11. Exploiting the pressure effect on lipase-catalyzed wax ester synthesis in dense carbon dioxide.
    Knez Z, Laudani CG, Habulin M, Reverchon E.
    Biotechnol Bioeng; 2007 Aug 15; 97(6):1366-75. PubMed ID: 17221889
    [Abstract] [Full Text] [Related]

  • 12. Immobilization of thermophilic enzymes in miniaturized flow reactors.
    Hickey AM, Marle L, McCreedy T, Watts P, Greenway GM, Littlechild JA.
    Biochem Soc Trans; 2007 Dec 15; 35(Pt 6):1621-3. PubMed ID: 18031278
    [Abstract] [Full Text] [Related]

  • 13. Kinetics based reaction optimization of enzyme catalyzed reduction of formaldehyde to methanol with synchronous cofactor regeneration.
    Marpani F, Sárossy Z, Pinelo M, Meyer AS.
    Biotechnol Bioeng; 2017 Dec 15; 114(12):2762-2770. PubMed ID: 28832942
    [Abstract] [Full Text] [Related]

  • 14. Immobilized Enzymes on Graphene as Nanobiocatalyst.
    Seelajaroen H, Bakandritsos A, Otyepka M, Zbořil R, Sariciftci NS.
    ACS Appl Mater Interfaces; 2020 Jan 08; 12(1):250-259. PubMed ID: 31816230
    [Abstract] [Full Text] [Related]

  • 15. The properties of covalently immobilized trypsin on soap-free P(MMA-EA-AA) latex particles.
    Kang K, Kan C, Yeung A, Liu D.
    Macromol Biosci; 2005 Apr 19; 5(4):344-51. PubMed ID: 15818587
    [Abstract] [Full Text] [Related]

  • 16. Single-Particle Kinetics of Immobilized Enzymes by Harnessing the Autofluorescence of Co-Immobilized Cofactors.
    Benítez-Mateos AI.
    Methods Mol Biol; 2020 Apr 19; 2100():309-317. PubMed ID: 31939132
    [Abstract] [Full Text] [Related]

  • 17. Improving the Enzymatic Cascade of Reactions for the Reduction of CO2 to CH3OH in Water: From Enzymes Immobilization Strategies to Cofactor Regeneration and Cofactor Suppression.
    Di Spiridione C, Aresta M, Dibenedetto A.
    Molecules; 2022 Aug 02; 27(15):. PubMed ID: 35956865
    [Abstract] [Full Text] [Related]

  • 18. Ordered Coimmobilization of a Multienzyme Cascade System with a Metal Organic Framework in a Membrane: Reduction of CO2 to Methanol.
    Zhu D, Ao S, Deng H, Wang M, Qin C, Zhang J, Jia Y, Ye P, Ni H.
    ACS Appl Mater Interfaces; 2019 Sep 18; 11(37):33581-33588. PubMed ID: 31419104
    [Abstract] [Full Text] [Related]

  • 19. Nanoparticle-supported multi-enzyme biocatalysis with in situ cofactor regeneration.
    Liu W, Zhang S, Wang P.
    J Biotechnol; 2009 Jan 01; 139(1):102-7. PubMed ID: 19000722
    [Abstract] [Full Text] [Related]

  • 20. Enzyme reaction engineering: effect of methanol on the synthesis of antibiotics catalyzed by immobilized penicillin G acylase under isothermal and non-isothermal conditions.
    Travascio P, Zito E, Portaccio M, Diano N, Grano V, Di Martino S, Bertolini T, Rossi S, Mita DG.
    Biotechnol Prog; 2002 Jan 01; 18(5):975-85. PubMed ID: 12363348
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.