These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


380 related items for PubMed ID: 17706866

  • 1. Removal of Cr(VI) from aqueous solutions using agricultural waste 'maize bran'.
    Hasan SH, Singh KK, Prakash O, Talat M, Ho YS.
    J Hazard Mater; 2008 Mar 21; 152(1):356-65. PubMed ID: 17706866
    [Abstract] [Full Text] [Related]

  • 2. Removal of Cr(VI) from wastewater using rice bran.
    Singh KK, Rastogi R, Hasan SH.
    J Colloid Interface Sci; 2005 Oct 01; 290(1):61-8. PubMed ID: 16122543
    [Abstract] [Full Text] [Related]

  • 3. Removal of lead from aqueous solutions by agricultural waste maize bran.
    Singh KK, Talat M, Hasan SH.
    Bioresour Technol; 2006 Nov 01; 97(16):2124-30. PubMed ID: 16275062
    [Abstract] [Full Text] [Related]

  • 4. Removal of chromium(VI) from aqueous solution by activated carbons: kinetic and equilibrium studies.
    Khezami L, Capart R.
    J Hazard Mater; 2005 Aug 31; 123(1-3):223-31. PubMed ID: 15913888
    [Abstract] [Full Text] [Related]

  • 5. Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon.
    Karthikeyan T, Rajgopal S, Miranda LR.
    J Hazard Mater; 2005 Sep 30; 124(1-3):192-9. PubMed ID: 15927367
    [Abstract] [Full Text] [Related]

  • 6. Removal of Cr(VI) from aqueous solution by two Lewatit-anion exchange resins.
    Gode F, Pehlivan E.
    J Hazard Mater; 2005 Mar 17; 119(1-3):175-82. PubMed ID: 15752863
    [Abstract] [Full Text] [Related]

  • 7. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes.
    Hu J, Chen C, Zhu X, Wang X.
    J Hazard Mater; 2009 Mar 15; 162(2-3):1542-50. PubMed ID: 18650001
    [Abstract] [Full Text] [Related]

  • 8. Kinetics and equilibrium studies of adsorption of chromium(VI) ion from industrial wastewater using Chrysophyllum albidum (Sapotaceae) seed shells.
    Amuda OS, Adelowo FE, Ologunde MO.
    Colloids Surf B Biointerfaces; 2009 Feb 01; 68(2):184-92. PubMed ID: 19022632
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Removal of Cr(VI) from industrial wastewaters by adsorption Part I: determination of optimum conditions.
    Uysal M, Ar I.
    J Hazard Mater; 2007 Oct 22; 149(2):482-91. PubMed ID: 17513041
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Biosorption of arsenic from aqueous solution using agricultural residue 'rice polish'.
    Ranjan D, Talat M, Hasan SH.
    J Hazard Mater; 2009 Jul 30; 166(2-3):1050-9. PubMed ID: 19131161
    [Abstract] [Full Text] [Related]

  • 17. Utilization of waste product (tamarind seeds) for the removal of Cr(VI) from aqueous solutions: equilibrium, kinetics, and regeneration studies.
    Gupta S, Babu BV.
    J Environ Manage; 2009 Jul 30; 90(10):3013-22. PubMed ID: 19473746
    [Abstract] [Full Text] [Related]

  • 18. Removal of chromium(III) from aqueous solutions using Lewatit S 100: the effect of pH, time, metal concentration and temperature.
    Gode F, Pehlivan E.
    J Hazard Mater; 2006 Aug 21; 136(2):330-7. PubMed ID: 16439060
    [Abstract] [Full Text] [Related]

  • 19. Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran.
    Nouri L, Ghodbane I, Hamdaoui O, Chiha M.
    J Hazard Mater; 2007 Oct 01; 149(1):115-25. PubMed ID: 17459582
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.