These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
476 related items for PubMed ID: 1770841
1. Evaluation of Meta-1 for a concept-based approach to the automated indexing and retrieval of bibliographic and full-text databases. Hersh WR. Med Decis Making; 1991; 11(4 Suppl):S120-4. PubMed ID: 1770841 [Abstract] [Full Text] [Related]
2. The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text. Rindflesch TC, Fiszman M. J Biomed Inform; 2003 Dec; 36(6):462-77. PubMed ID: 14759819 [Abstract] [Full Text] [Related]
3. Ranking the whole MEDLINE database according to a large training set using text indexing. Suomela BP, Andrade MA. BMC Bioinformatics; 2005 Mar 24; 6():75. PubMed ID: 15790421 [Abstract] [Full Text] [Related]
4. ADAM: another database of abbreviations in MEDLINE. Zhou W, Torvik VI, Smalheiser NR. Bioinformatics; 2006 Nov 15; 22(22):2813-8. PubMed ID: 16982707 [Abstract] [Full Text] [Related]
5. Recognizing names in biomedical texts: a machine learning approach. Zhou G, Zhang J, Su J, Shen D, Tan C. Bioinformatics; 2004 May 01; 20(7):1178-90. PubMed ID: 14871877 [Abstract] [Full Text] [Related]
6. Enhancing HMM-based biomedical named entity recognition by studying special phenomena. Zhang J, Shen D, Zhou G, Su J, Tan CL. J Biomed Inform; 2004 Dec 01; 37(6):411-22. PubMed ID: 15542015 [Abstract] [Full Text] [Related]
7. Resolving abbreviations to their senses in Medline. Gaudan S, Kirsch H, Rebholz-Schuhmann D. Bioinformatics; 2005 Sep 15; 21(18):3658-64. PubMed ID: 16037121 [Abstract] [Full Text] [Related]
8. Comparison of character-level and part of speech features for name recognition in biomedical texts. Collier N, Takeuchi K. J Biomed Inform; 2004 Dec 15; 37(6):423-35. PubMed ID: 15542016 [Abstract] [Full Text] [Related]
11. Distributed modules for text annotation and IE applied to the biomedical domain. Kirsch H, Gaudan S, Rebholz-Schuhmann D. Int J Med Inform; 2006 Jun 15; 75(6):496-500. PubMed ID: 16085453 [Abstract] [Full Text] [Related]
13. Enhanced information retrieval from narrative German-language clinical text documents using automated document classification. Spat S, Cadonna B, Rakovac I, Gütl C, Leitner H, Stark G, Beck P. Stud Health Technol Inform; 2008 Jun 15; 136():473-8. PubMed ID: 18487776 [Abstract] [Full Text] [Related]
15. Experiments with hierarchical concept-based search. Moskovitch R, Sa'adon R, Behiri E, Martins S, Weiss A, Shahar Y. Stud Health Technol Inform; 2007 Jun 15; 129(Pt 1):422-6. PubMed ID: 17911752 [Abstract] [Full Text] [Related]
17. OQAFMA Querying agent for the Foundational Model of Anatomy: a prototype for providing flexible and efficient access to large semantic networks. Mork P, Brinkley JF, Rosse C. J Biomed Inform; 2003 Dec 15; 36(6):501-17. PubMed ID: 14759821 [Abstract] [Full Text] [Related]
19. TCMGeneDIT: a database for associated traditional Chinese medicine, gene and disease information using text mining. Fang YC, Huang HC, Chen HH, Juan HF. BMC Complement Altern Med; 2008 Oct 14; 8():58. PubMed ID: 18854039 [Abstract] [Full Text] [Related]