These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


228 related items for PubMed ID: 17710556

  • 1. Glimpses of evolution: heterochromatic histone H3K9 methyltransferases left its marks behind.
    Krauss V.
    Genetica; 2008 May; 133(1):93-106. PubMed ID: 17710556
    [Abstract] [Full Text] [Related]

  • 2. The evolution of the histone methyltransferase gene Su(var)3-9 in metazoans includes a fusion with and a re-fission from a functionally unrelated gene.
    Krauss V, Fassl A, Fiebig P, Patties I, Sass H.
    BMC Evol Biol; 2006 Mar 02; 6():18. PubMed ID: 16512904
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. The N-terminus of Drosophila SU(VAR)3-9 mediates dimerization and regulates its methyltransferase activity.
    Eskeland R, Czermin B, Boeke J, Bonaldi T, Regula JT, Imhof A.
    Biochemistry; 2004 Mar 30; 43(12):3740-9. PubMed ID: 15035645
    [Abstract] [Full Text] [Related]

  • 9. Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homolog SU(VAR)3-3.
    Rudolph T, Yonezawa M, Lein S, Heidrich K, Kubicek S, Schäfer C, Phalke S, Walther M, Schmidt A, Jenuwein T, Reuter G.
    Mol Cell; 2007 Apr 13; 26(1):103-15. PubMed ID: 17434130
    [Abstract] [Full Text] [Related]

  • 10. Trilogies of histone lysine methylation as epigenetic landmarks of the eukaryotic genome.
    Lachner M, Sengupta R, Schotta G, Jenuwein T.
    Cold Spring Harb Symp Quant Biol; 2004 Apr 13; 69():209-18. PubMed ID: 16117651
    [No Abstract] [Full Text] [Related]

  • 11. Plant SET- and RING-associated domain proteins in heterochromatinization.
    Liu S, Yu Y, Ruan Y, Meyer D, Wolff M, Xu L, Wang N, Steinmetz A, Shen WH.
    Plant J; 2007 Dec 13; 52(5):914-26. PubMed ID: 17892444
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Structure and function of histone H3 lysine 9 methyltransferases and demethylases.
    Krishnan S, Horowitz S, Trievel RC.
    Chembiochem; 2011 Jan 24; 12(2):254-63. PubMed ID: 21243713
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Regulation and function of H3K9 methylation.
    Shinkai Y.
    Subcell Biochem; 2007 Jan 24; 41():337-50. PubMed ID: 17484135
    [Abstract] [Full Text] [Related]

  • 18. Rice SUVH histone methyltransferase genes display specific functions in chromatin modification and retrotransposon repression.
    Qin FJ, Sun QW, Huang LM, Chen XS, Zhou DX.
    Mol Plant; 2010 Jul 24; 3(4):773-82. PubMed ID: 20566579
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Functional dynamics of H3K9 methylation during meiotic prophase progression.
    Tachibana M, Nozaki M, Takeda N, Shinkai Y.
    EMBO J; 2007 Jul 25; 26(14):3346-59. PubMed ID: 17599069
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.