These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


483 related items for PubMed ID: 17712406

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Deterministic epidemic models with explicit household structure.
    House T, Keeling MJ.
    Math Biosci; 2008 May; 213(1):29-39. PubMed ID: 18374370
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Incorporating population dynamics into household models of infectious disease transmission.
    Glass K, McCaw JM, McVernon J.
    Epidemics; 2011 Sep; 3(3-4):152-8. PubMed ID: 22094338
    [Abstract] [Full Text] [Related]

  • 6. Joint estimation of the basic reproduction number and generation time parameters for infectious disease outbreaks.
    Griffin JT, Garske T, Ghani AC, Clarke PS.
    Biostatistics; 2011 Apr; 12(2):303-12. PubMed ID: 20858771
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Estimating the within-household infection rate in emerging SIR epidemics among a community of households.
    Ball F, Shaw L.
    J Math Biol; 2015 Dec; 71(6-7):1705-35. PubMed ID: 25820343
    [Abstract] [Full Text] [Related]

  • 9. An integral equation model for the control of a smallpox outbreak.
    Aldis GK, Roberts MG.
    Math Biosci; 2005 May; 195(1):1-22. PubMed ID: 15922002
    [Abstract] [Full Text] [Related]

  • 10. Assessing the effect of non-pharmaceutical interventions on containing an emerging disease.
    Sang Z, Qiu Z, Yan X, Zou Y.
    Math Biosci Eng; 2012 Jan 01; 9(1):147-64. PubMed ID: 22229401
    [Abstract] [Full Text] [Related]

  • 11. Large-scale spatial-transmission models of infectious disease.
    Riley S.
    Science; 2007 Jun 01; 316(5829):1298-301. PubMed ID: 17540894
    [Abstract] [Full Text] [Related]

  • 12. Modelling development of epidemics with dynamic small-world networks.
    Saramäki J, Kaski K.
    J Theor Biol; 2005 Jun 07; 234(3):413-21. PubMed ID: 15784275
    [Abstract] [Full Text] [Related]

  • 13. Time variations in the transmissibility of pandemic influenza in Prussia, Germany, from 1918-19.
    Nishiura H.
    Theor Biol Med Model; 2007 Jun 04; 4():20. PubMed ID: 17547753
    [Abstract] [Full Text] [Related]

  • 14. Epidemic modelling: aspects where stochasticity matters.
    Britton T, Lindenstrand D.
    Math Biosci; 2009 Dec 04; 222(2):109-16. PubMed ID: 19837097
    [Abstract] [Full Text] [Related]

  • 15. The state-reproduction number for a multistate class age structured epidemic system and its application to the asymptomatic transmission model.
    Inaba H, Nishiura H.
    Math Biosci; 2008 Nov 04; 216(1):77-89. PubMed ID: 18768142
    [Abstract] [Full Text] [Related]

  • 16. Who is the infector? Epidemic models with symptomatic and asymptomatic cases.
    Leung KY, Trapman P, Britton T.
    Math Biosci; 2018 Jul 04; 301():190-198. PubMed ID: 29654792
    [Abstract] [Full Text] [Related]

  • 17. Epidemic models with heterogeneous mixing and treatment.
    Brauer F.
    Bull Math Biol; 2008 Oct 04; 70(7):1869-85. PubMed ID: 18663538
    [Abstract] [Full Text] [Related]

  • 18. Estimating the generation interval of influenza A (H1N1) in a range of social settings.
    te Beest DE, Wallinga J, Donker T, van Boven M.
    Epidemiology; 2013 Mar 04; 24(2):244-50. PubMed ID: 23337238
    [Abstract] [Full Text] [Related]

  • 19. The correlation between infectivity and incubation period of measles, estimated from households with two cases.
    Klinkenberg D, Nishiura H.
    J Theor Biol; 2011 Sep 07; 284(1):52-60. PubMed ID: 21704640
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.