These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
234 related items for PubMed ID: 17713928
1. Structure of 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonic acid synthase, a catalyst in the archaeal pathway for the biosynthesis of aromatic amino acids. Morar M, White RH, Ealick SE. Biochemistry; 2007 Sep 18; 46(37):10562-71. PubMed ID: 17713928 [Abstract] [Full Text] [Related]
2. L-Aspartate semialdehyde and a 6-deoxy-5-ketohexose 1-phosphate are the precursors to the aromatic amino acids in Methanocaldococcus jannaschii. White RH. Biochemistry; 2004 Jun 15; 43(23):7618-27. PubMed ID: 15182204 [Abstract] [Full Text] [Related]
3. Mechanism of the Schiff base forming fructose-1,6-bisphosphate aldolase: structural analysis of reaction intermediates. Lorentzen E, Siebers B, Hensel R, Pohl E. Biochemistry; 2005 Mar 22; 44(11):4222-9. PubMed ID: 15766250 [Abstract] [Full Text] [Related]
4. MJ0400 from Methanocaldococcus jannaschii exhibits fructose-1,6-bisphosphate aldolase activity. Samland AK, Wang M, Sprenger GA. FEMS Microbiol Lett; 2008 Apr 22; 281(1):36-41. PubMed ID: 18318840 [Abstract] [Full Text] [Related]
5. The crystal structure of Escherichia coli class II fructose-1, 6-bisphosphate aldolase in complex with phosphoglycolohydroxamate reveals details of mechanism and specificity. Hall DR, Leonard GA, Reed CD, Watt CI, Berry A, Hunter WN. J Mol Biol; 1999 Mar 26; 287(2):383-94. PubMed ID: 10080900 [Abstract] [Full Text] [Related]
6. Snapshots of catalysis: the structure of fructose-1,6-(bis)phosphate aldolase covalently bound to the substrate dihydroxyacetone phosphate. Choi KH, Shi J, Hopkins CE, Tolan DR, Allen KN. Biochemistry; 2001 Nov 20; 40(46):13868-75. PubMed ID: 11705376 [Abstract] [Full Text] [Related]
7. Carboxy-terminus recruitment induced by substrate binding in eukaryotic fructose bis-phosphate aldolases. Lafrance-Vanasse J, Sygusch J. Biochemistry; 2007 Aug 21; 46(33):9533-40. PubMed ID: 17661446 [Abstract] [Full Text] [Related]
8. The crystal and solution studies of glucosamine-6-phosphate synthase from Candida albicans. Raczynska J, Olchowy J, Konariev PV, Svergun DI, Milewski S, Rypniewski W. J Mol Biol; 2007 Sep 21; 372(3):672-88. PubMed ID: 17681543 [Abstract] [Full Text] [Related]
9. A functional role for a flexible loop containing Glu182 in the class II fructose-1,6-bisphosphate aldolase from Escherichia coli. Zgiby S, Plater AR, Bates MA, Thomson GJ, Berry A. J Mol Biol; 2002 Jan 11; 315(2):131-40. PubMed ID: 11779234 [Abstract] [Full Text] [Related]
10. Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily. Brouns SJ, Barends TR, Worm P, Akerboom J, Turnbull AP, Salmon L, van der Oost J. J Mol Biol; 2008 May 30; 379(2):357-71. PubMed ID: 18448118 [Abstract] [Full Text] [Related]
11. Stereoselectivity of fructose-1,6-bisphosphate aldolase in Thermus caldophilus. Lee JH, Bae J, Kim D, Choi Y, Im YJ, Koh S, Kim JS, Kim MK, Kang GB, Hong SI, Lee DS, Eom SH. Biochem Biophys Res Commun; 2006 Sep 01; 347(3):616-25. PubMed ID: 16843441 [Abstract] [Full Text] [Related]
12. Structure of an archaeal TYW1, the enzyme catalyzing the second step of wye-base biosynthesis. Goto-Ito S, Ishii R, Ito T, Shibata R, Fusatomi E, Sekine SI, Bessho Y, Yokoyama S. Acta Crystallogr D Biol Crystallogr; 2007 Oct 01; 63(Pt 10):1059-68. PubMed ID: 17881823 [Abstract] [Full Text] [Related]
13. Substrate ambiguity and crystal structure of Pyrococcus furiosus 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase: an ancestral 3-deoxyald-2-ulosonate-phosphate synthase? Schofield LR, Anderson BF, Patchett ML, Norris GE, Jameson GB, Parker EJ. Biochemistry; 2005 Sep 13; 44(36):11950-62. PubMed ID: 16142893 [Abstract] [Full Text] [Related]
14. Structure of aldolase from Thermus thermophilus HB8 showing the contribution of oligomeric state to thermostability. Lokanath NK, Shiromizu I, Ohshima N, Nodake Y, Sugahara M, Yokoyama S, Kuramitsu S, Miyano M, Kunishima N. Acta Crystallogr D Biol Crystallogr; 2004 Oct 13; 60(Pt 10):1816-23. PubMed ID: 15388928 [Abstract] [Full Text] [Related]
15. Converting Transaldolase into Aldolase through Swapping of the Multifunctional Acid-Base Catalyst: Common and Divergent Catalytic Principles in F6P Aldolase and Transaldolase. Sautner V, Friedrich MM, Lehwess-Litzmann A, Tittmann K. Biochemistry; 2015 Jul 28; 54(29):4475-86. PubMed ID: 26131847 [Abstract] [Full Text] [Related]
16. New superfamily members identified for Schiff-base enzymes based on verification of catalytically essential residues. Choi KH, Lai V, Foster CE, Morris AJ, Tolan DR, Allen KN. Biochemistry; 2006 Jul 18; 45(28):8546-55. PubMed ID: 16834328 [Abstract] [Full Text] [Related]
17. Role of glutamate 243 in the active site of 2-deoxy-scyllo-inosose synthase from Bacillus circulans. Hirayama T, Kudo F, Huang Z, Eguchi T. Bioorg Med Chem; 2007 Jan 01; 15(1):418-23. PubMed ID: 17035031 [Abstract] [Full Text] [Related]
18. The catalytic mechanism of indole-3-glycerol phosphate synthase: crystal structures of complexes of the enzyme from Sulfolobus solfataricus with substrate analogue, substrate, and product. Hennig M, Darimont BD, Jansonius JN, Kirschner K. J Mol Biol; 2002 Jun 07; 319(3):757-66. PubMed ID: 12054868 [Abstract] [Full Text] [Related]
19. Crystal structure of the reduced Schiff-base intermediate complex of transaldolase B from Escherichia coli: mechanistic implications for class I aldolases. Jia J, Schörken U, Lindqvist Y, Sprenger GA, Schneider G. Protein Sci; 1997 Jan 07; 6(1):119-24. PubMed ID: 9007983 [Abstract] [Full Text] [Related]
20. Structure, function and evolution of the Archaeal class I fructose-1,6-bisphosphate aldolase. Lorentzen E, Siebers B, Hensel R, Pohl E. Biochem Soc Trans; 2004 Apr 07; 32(Pt 2):259-63. PubMed ID: 15046584 [Abstract] [Full Text] [Related] Page: [Next] [New Search]