These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
412 related items for PubMed ID: 17715395
1. Monitoring interactions between receptor tyrosine kinases and their downstream effector proteins in living cells using bioluminescence resonance energy transfer. Tan PK, Wang J, Littler PL, Wong KK, Sweetnam TA, Keefe W, Nash NR, Reding EC, Piu F, Brann MR, Schiffer HH. Mol Pharmacol; 2007 Dec; 72(6):1440-6. PubMed ID: 17715395 [Abstract] [Full Text] [Related]
2. Pharmacology and signaling properties of epidermal growth factor receptor isoforms studied by bioluminescence resonance energy transfer. Schiffer HH, Reding EC, Fuhs SR, Lu Q, Piu F, Wong S, Littler PL, Weiner DM, Keefe W, Tan PK, Nash NR, Knapp AE, Olsson R, Brann MR. Mol Pharmacol; 2007 Feb; 71(2):508-18. PubMed ID: 16968809 [Abstract] [Full Text] [Related]
3. Monitoring the activation state of the insulin-like growth factor-1 receptor and its interaction with protein tyrosine phosphatase 1B using bioluminescence resonance energy transfer. Blanquart C, Boute N, Lacasa D, Issad T. Mol Pharmacol; 2005 Sep; 68(3):885-94. PubMed ID: 15976035 [Abstract] [Full Text] [Related]
4. Interaction between the insulin receptor and Grb14: a dynamic study in living cells using BRET. Nouaille S, Blanquart C, Zilberfarb V, Boute N, Perdereau D, Burnol AF, Issad T. Biochem Pharmacol; 2006 Nov 30; 72(11):1355-66. PubMed ID: 16934761 [Abstract] [Full Text] [Related]
5. Use of signal specific receptor tyrosine kinase oncoproteins reveals that pathways downstream from Grb2 or Shc are sufficient for cell transformation and metastasis. Saucier C, Papavasiliou V, Palazzo A, Naujokas MA, Kremer R, Park M. Oncogene; 2002 Mar 14; 21(12):1800-11. PubMed ID: 11896612 [Abstract] [Full Text] [Related]
6. Monitoring the activation state of insulin/insulin-like growth factor-1 hybrid receptors using bioluminescence resonance energy transfer. Blanquart C, Gonzalez-Yanes C, Issad T. Mol Pharmacol; 2006 Nov 14; 70(5):1802-11. PubMed ID: 16926280 [Abstract] [Full Text] [Related]
7. Novel, isotype-specific sensors for protein kinase A subunit interaction based on bioluminescence resonance energy transfer (BRET). Prinz A, Diskar M, Erlbruch A, Herberg FW. Cell Signal; 2006 Oct 14; 18(10):1616-25. PubMed ID: 16524697 [Abstract] [Full Text] [Related]
8. Real-time measurement in living cells of insulin-like growth factor activity using bioluminescence resonance energy transfer. Laursen LS, Oxvig C. Biochem Pharmacol; 2005 Jun 15; 69(12):1723-32. PubMed ID: 15935147 [Abstract] [Full Text] [Related]
9. Cellular BRET assay suggests a conformational rearrangement of preformed TrkB/Shc complexes following BDNF-dependent activation. De Vries L, Finana F, Cachoux F, Vacher B, Sokoloff P, Cussac D. Cell Signal; 2010 Jan 15; 22(1):158-65. PubMed ID: 19781635 [Abstract] [Full Text] [Related]
10. Assays to measure the activation of membrane tyrosine kinase receptors: focus on cellular methods. Minor LK. Curr Opin Drug Discov Devel; 2003 Sep 15; 6(5):760-5. PubMed ID: 14579525 [Abstract] [Full Text] [Related]
11. Characterization of G-protein coupled receptor kinase interaction with the neurokinin-1 receptor using bioluminescence resonance energy transfer. Jorgensen R, Holliday ND, Hansen JL, Vrecl M, Heding A, Schwartz TW, Elling CE. Mol Pharmacol; 2008 Feb 15; 73(2):349-58. PubMed ID: 17986524 [Abstract] [Full Text] [Related]
12. Detecting and imaging protein-protein interactions during G protein-mediated signal transduction in vivo and in situ by using fluorescence-based techniques. Hébert TE, Galés C, Rebois RV. Cell Biochem Biophys; 2006 Feb 15; 45(1):85-109. PubMed ID: 16679566 [Abstract] [Full Text] [Related]
13. Fluorescence resonance energy transfer analysis of proapoptotic CD95-EGF receptor interactions in Huh7 cells. Eberle A, Reinehr R, Becker S, Häussinger D. Hepatology; 2005 Feb 15; 41(2):315-26. PubMed ID: 15660394 [Abstract] [Full Text] [Related]
14. Analysis of in vitro SUMOylation using bioluminescence resonance energy transfer (BRET). Kim YP, Jin Z, Kim E, Park S, Oh YH, Kim HS. Biochem Biophys Res Commun; 2009 May 08; 382(3):530-4. PubMed ID: 19289109 [Abstract] [Full Text] [Related]
15. Tyrosine kinase receptors as attractive targets of cancer therapy. Bennasroune A, Gardin A, Aunis D, Crémel G, Hubert P. Crit Rev Oncol Hematol; 2004 Apr 08; 50(1):23-38. PubMed ID: 15094157 [Abstract] [Full Text] [Related]
16. Receptor tyrosine kinase and downstream signalling analysis in diffuse malignant peritoneal mesothelioma. Perrone F, Jocollè G, Pennati M, Deraco M, Baratti D, Brich S, Orsenigo M, Tarantino E, De Marco C, Bertan C, Cabras A, Bertulli R, Pierotti MA, Zaffaroni N, Pilotti S. Eur J Cancer; 2010 Oct 08; 46(15):2837-48. PubMed ID: 20692828 [Abstract] [Full Text] [Related]
17. Efficient suppression of FGF-2-induced ERK activation by the cooperative interaction among mammalian Sprouty isoforms. Ozaki K, Miyazaki S, Tanimura S, Kohno M. J Cell Sci; 2005 Dec 15; 118(Pt 24):5861-71. PubMed ID: 16339969 [Abstract] [Full Text] [Related]
18. Monitoring the activation state of the insulin receptor using bioluminescence resonance energy transfer. Boute N, Pernet K, Issad T. Mol Pharmacol; 2001 Oct 15; 60(4):640-5. PubMed ID: 11562424 [Abstract] [Full Text] [Related]