These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


154 related items for PubMed ID: 17715946

  • 21. Binding of D- and L-captopril inhibitors to metallo-beta-lactamase studied by polarizable molecular mechanics and quantum mechanics.
    Antony J, Gresh N, Olsen L, Hemmingsen L, Schofield CJ, Bauer R.
    J Comput Chem; 2002 Oct; 23(13):1281-96. PubMed ID: 12210153
    [Abstract] [Full Text] [Related]

  • 22. Hybrid QM/MM and DFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-beta-lactamase CcrA from Bacteroides fragilis.
    Park H, Brothers EN, Merz KM.
    J Am Chem Soc; 2005 Mar 30; 127(12):4232-41. PubMed ID: 15783205
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Molecular dynamics simulations of the dinuclear zinc-beta-lactamase from Bacteroides fragilis complexed with imipenem.
    Suárez D, Díaz N, Merz KM.
    J Comput Chem; 2002 Dec 30; 23(16):1587-600. PubMed ID: 12395427
    [Abstract] [Full Text] [Related]

  • 25. Asp-120 locates Zn2 for optimal metallo-beta-lactamase activity.
    Llarrull LI, Fabiane SM, Kowalski JM, Bennett B, Sutton BJ, Vila AJ.
    J Biol Chem; 2007 Jun 22; 282(25):18276-18285. PubMed ID: 17426028
    [Abstract] [Full Text] [Related]

  • 26. Crystal structure of Serratia fonticola Sfh-I: activation of the nucleophile in mono-zinc metallo-β-lactamases.
    Fonseca F, Bromley EH, Saavedra MJ, Correia A, Spencer J.
    J Mol Biol; 2011 Sep 02; 411(5):951-9. PubMed ID: 21762699
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. X-ray absorption spectroscopy of the zinc-binding sites in the class B2 metallo-beta-lactamase ImiS from Aeromonas veronii bv. sobria.
    Costello AL, Sharma NP, Yang KW, Crowder MW, Tierney DL.
    Biochemistry; 2006 Nov 14; 45(45):13650-8. PubMed ID: 17087519
    [Abstract] [Full Text] [Related]

  • 30. Three-dimensional structure of the zinc-containing phosphotriesterase with the bound substrate analog diethyl 4-methylbenzylphosphonate.
    Vanhooke JL, Benning MM, Raushel FM, Holden HM.
    Biochemistry; 1996 May 14; 35(19):6020-5. PubMed ID: 8634243
    [Abstract] [Full Text] [Related]

  • 31. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily.
    Bebrone C.
    Biochem Pharmacol; 2007 Dec 15; 74(12):1686-701. PubMed ID: 17597585
    [Abstract] [Full Text] [Related]

  • 32. Hydroxyl groups in the (beta)beta sandwich of metallo-beta-lactamases favor enzyme activity: a computational protein design study.
    Oelschlaeger P, Mayo SL.
    J Mol Biol; 2005 Jul 15; 350(3):395-401. PubMed ID: 15946681
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Structure of the wild-type TEM-1 beta-lactamase at 1.55 A and the mutant enzyme Ser70Ala at 2.1 A suggest the mode of noncovalent catalysis for the mutant enzyme.
    Stec B, Holtz KM, Wojciechowski CL, Kantrowitz ER.
    Acta Crystallogr D Biol Crystallogr; 2005 Aug 15; 61(Pt 8):1072-9. PubMed ID: 16041072
    [Abstract] [Full Text] [Related]

  • 35. Biochemical characterization and mutational analysis of the mononuclear non-haem Fe2+ site in Dke1, a cupin-type dioxygenase from Acinetobacter johnsonii.
    Leitgeb S, Straganz GD, Nidetzky B.
    Biochem J; 2009 Mar 01; 418(2):403-11. PubMed ID: 18973472
    [Abstract] [Full Text] [Related]

  • 36. The role of OXA-1 beta-lactamase Asp(66) in the stabilization of the active-site carbamate group and in substrate turnover.
    Leonard DA, Hujer AM, Smith BA, Schneider KD, Bethel CR, Hujer KM, Bonomo RA.
    Biochem J; 2008 Mar 15; 410(3):455-62. PubMed ID: 18031291
    [Abstract] [Full Text] [Related]

  • 37. Enzyme deactivation due to metal-ion dissociation during turnover of the cobalt-beta-lactamase catalyzed hydrolysis of beta-lactams.
    Badarau A, Page MI.
    Biochemistry; 2006 Sep 12; 45(36):11012-20. PubMed ID: 16953588
    [Abstract] [Full Text] [Related]

  • 38. Dipeptide hydrolysis by the dinuclear zinc enzyme human renal dipeptidase: mechanistic insights from DFT calculations.
    Liao RZ, Himo F, Yu JG, Liu RZ.
    J Inorg Biochem; 2010 Jan 12; 104(1):37-46. PubMed ID: 19879002
    [Abstract] [Full Text] [Related]

  • 39. A variety of roles for versatile zinc in metallo-β-lactamases.
    Karsisiotis AI, Damblon CF, Roberts GC.
    Metallomics; 2014 Jul 12; 6(7):1181-97. PubMed ID: 24696003
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.