These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


145 related items for PubMed ID: 17717297

  • 1. Angiotensin II receptor blocker inhibits neointimal hyperplasia through regulation of smooth muscle-like progenitor cells.
    Yamada T, Kondo T, Numaguchi Y, Tsuzuki M, Matsubara T, Manabe I, Sata M, Nagai R, Murohara T.
    Arterioscler Thromb Vasc Biol; 2007 Nov; 27(11):2363-9. PubMed ID: 17717297
    [Abstract] [Full Text] [Related]

  • 2. Potent inhibitory effect of sirolimus on circulating vascular progenitor cells.
    Fukuda D, Sata M, Tanaka K, Nagai R.
    Circulation; 2005 Feb 22; 111(7):926-31. PubMed ID: 15710768
    [Abstract] [Full Text] [Related]

  • 3. Stem cell factor deficiency is vasculoprotective: unraveling a new therapeutic potential of imatinib mesylate.
    Wang CH, Anderson N, Li SH, Szmitko PE, Cherng WJ, Fedak PW, Fazel S, Li RK, Yau TM, Weisel RD, Stanford WL, Verma S.
    Circ Res; 2006 Sep 15; 99(6):617-25. PubMed ID: 16931795
    [Abstract] [Full Text] [Related]

  • 4. Rosiglitazone facilitates angiogenic progenitor cell differentiation toward endothelial lineage: a new paradigm in glitazone pleiotropy.
    Wang CH, Ciliberti N, Li SH, Szmitko PE, Weisel RD, Fedak PW, Al-Omran M, Cherng WJ, Li RK, Stanford WL, Verma S.
    Circulation; 2004 Mar 23; 109(11):1392-400. PubMed ID: 14993120
    [Abstract] [Full Text] [Related]

  • 5. Temporal and spatial characterization of cellular constituents during neointimal hyperplasia after vascular injury: Potential contribution of bone-marrow-derived progenitors to arterial remodeling.
    Shoji M, Sata M, Fukuda D, Tanaka K, Sato T, Iso Y, Shibata M, Suzuki H, Koba S, Geshi E, Katagiri T.
    Cardiovasc Pathol; 2004 Mar 23; 13(6):306-12. PubMed ID: 15556776
    [Abstract] [Full Text] [Related]

  • 6. Diverse contribution of bone marrow-derived cells to vascular remodeling associated with pulmonary arterial hypertension and arterial neointimal formation.
    Sahara M, Sata M, Morita T, Nakamura K, Hirata Y, Nagai R.
    Circulation; 2007 Jan 30; 115(4):509-17. PubMed ID: 17242277
    [Abstract] [Full Text] [Related]

  • 7. Inflammatory response to acute myocardial infarction augments neointimal hyperplasia after vascular injury in a remote artery.
    Takaoka M, Uemura S, Kawata H, Imagawa K, Takeda Y, Nakatani K, Naya N, Horii M, Yamano S, Miyamoto Y, Yoshimasa Y, Saito Y.
    Arterioscler Thromb Vasc Biol; 2006 Sep 30; 26(9):2083-9. PubMed ID: 16778119
    [Abstract] [Full Text] [Related]

  • 8. Late outgrowth endothelial cells derived from Wharton jelly in human umbilical cord reduce neointimal formation after vascular injury: involvement of pigment epithelium-derived factor.
    Wang SH, Lin SJ, Chen YH, Lin FY, Shih JC, Wu CC, Wu HL, Chen YL.
    Arterioscler Thromb Vasc Biol; 2009 Jun 30; 29(6):816-22. PubMed ID: 19342598
    [Abstract] [Full Text] [Related]

  • 9. The origin of post-injury neointimal cells in the rat balloon injury model.
    Rodriguez-Menocal L, St-Pierre M, Wei Y, Khan S, Mateu D, Calfa M, Rahnemai-Azar AA, Striker G, Pham SM, Vazquez-Padron RI.
    Cardiovasc Res; 2009 Jan 01; 81(1):46-53. PubMed ID: 18818213
    [Abstract] [Full Text] [Related]

  • 10. Lysophosphatidic acid receptors LPA1 and LPA3 promote CXCL12-mediated smooth muscle progenitor cell recruitment in neointima formation.
    Subramanian P, Karshovska E, Reinhard P, Megens RT, Zhou Z, Akhtar S, Schumann U, Li X, van Zandvoort M, Ludin C, Weber C, Schober A.
    Circ Res; 2010 Jul 09; 107(1):96-105. PubMed ID: 20360252
    [Abstract] [Full Text] [Related]

  • 11. Plasminogen activator inhibitor-1 from bone marrow-derived cells suppresses neointimal formation after vascular injury in mice.
    Schäfer K, Schroeter MR, Dellas C, Puls M, Nitsche M, Weiss E, Hasenfuss G, Konstantinides SV.
    Arterioscler Thromb Vasc Biol; 2006 Jun 09; 26(6):1254-9. PubMed ID: 16514083
    [Abstract] [Full Text] [Related]

  • 12. Role of bone marrow-derived progenitor cells in cuff-induced vascular injury in mice.
    Xu Y, Arai H, Zhuge X, Sano H, Murayama T, Yoshimoto M, Heike T, Nakahata T, Nishikawa S, Kita T, Yokode M.
    Arterioscler Thromb Vasc Biol; 2004 Mar 09; 24(3):477-82. PubMed ID: 14739121
    [Abstract] [Full Text] [Related]

  • 13. Deficiency of tumour necrosis factor-alpha and interferon-gamma in bone marrow cells synergistically inhibits neointimal formation following vascular injury.
    Murayama H, Takahashi M, Takamoto M, Shiba Y, Ise H, Koyama J, Tagawa Y, Iwakura Y, Ikeda U.
    Cardiovasc Res; 2008 Nov 01; 80(2):175-80. PubMed ID: 18791204
    [Abstract] [Full Text] [Related]

  • 14. Angiotensin II upregulates LDL receptor-related protein (LRP1) expression in the vascular wall: a new pro-atherogenic mechanism of hypertension.
    Sendra J, Llorente-Cortés V, Costales P, Huesca-Gómez C, Badimon L.
    Cardiovasc Res; 2008 Jun 01; 78(3):581-9. PubMed ID: 18281370
    [Abstract] [Full Text] [Related]

  • 15. Critical role of bone marrow apoptosis-associated speck-like protein, an inflammasome adaptor molecule, in neointimal formation after vascular injury in mice.
    Yajima N, Takahashi M, Morimoto H, Shiba Y, Takahashi Y, Masumoto J, Ise H, Sagara J, Nakayama J, Taniguchi S, Ikeda U.
    Circulation; 2008 Jun 17; 117(24):3079-87. PubMed ID: 18541743
    [Abstract] [Full Text] [Related]

  • 16. Suppression of diabetes-induced retinal inflammation by blocking the angiotensin II type 1 receptor or its downstream nuclear factor-kappaB pathway.
    Nagai N, Izumi-Nagai K, Oike Y, Koto T, Satofuka S, Ozawa Y, Yamashiro K, Inoue M, Tsubota K, Umezawa K, Ishida S.
    Invest Ophthalmol Vis Sci; 2007 Sep 17; 48(9):4342-50. PubMed ID: 17724226
    [Abstract] [Full Text] [Related]

  • 17. Erythropoietin-mobilized endothelial progenitors enhance reendothelialization via Akt-endothelial nitric oxide synthase activation and prevent neointimal hyperplasia.
    Urao N, Okigaki M, Yamada H, Aadachi Y, Matsuno K, Matsui A, Matsunaga S, Tateishi K, Nomura T, Takahashi T, Tatsumi T, Matsubara H.
    Circ Res; 2006 Jun 09; 98(11):1405-13. PubMed ID: 16645141
    [Abstract] [Full Text] [Related]

  • 18. Bone marrow AT1 augments neointima formation by promoting mobilization of smooth muscle progenitors via platelet-derived SDF-1{alpha}.
    Yokoi H, Yamada H, Tsubakimoto Y, Takata H, Kawahito H, Kishida S, Kato T, Matsui A, Hirai H, Ashihara E, Maekawa T, Iwai M, Horiuchi M, Ikeda K, Takahashi T, Okigaki M, Matsubara H.
    Arterioscler Thromb Vasc Biol; 2010 Jan 09; 30(1):60-7. PubMed ID: 19834109
    [Abstract] [Full Text] [Related]

  • 19. Hypercholesterolemia contributes to the development of atherosclerosis and vascular remodeling by recruiting bone marrow-derived cells in cuff-induced vascular injury.
    Xu Y, Arai H, Murayama T, Kita T, Yokode M.
    Biochem Biophys Res Commun; 2007 Nov 23; 363(3):782-7. PubMed ID: 17897625
    [Abstract] [Full Text] [Related]

  • 20. Time-course analysis on the differentiation of bone marrow-derived progenitor cells into smooth muscle cells during neointima formation.
    Daniel JM, Bielenberg W, Stieger P, Weinert S, Tillmanns H, Sedding DG.
    Arterioscler Thromb Vasc Biol; 2010 Oct 23; 30(10):1890-6. PubMed ID: 20576944
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.