These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


174 related items for PubMed ID: 17717970

  • 1. Gadonanotubes as new high-performance MRI contrast agents.
    Sitharaman B, Wilson LJ.
    Int J Nanomedicine; 2006; 1(3):291-5. PubMed ID: 17717970
    [Abstract] [Full Text] [Related]

  • 2. Nanotechnology and MRI contrast enhancement.
    Matson ML, Wilson LJ.
    Future Med Chem; 2010 Mar; 2(3):491-502. PubMed ID: 21426177
    [Abstract] [Full Text] [Related]

  • 3. Gadonanotubes as ultrasensitive pH-smart probes for magnetic resonance imaging.
    Hartman KB, Laus S, Bolskar RD, Muthupillai R, Helm L, Toth E, Merbach AE, Wilson LJ.
    Nano Lett; 2008 Feb; 8(2):415-9. PubMed ID: 18215084
    [Abstract] [Full Text] [Related]

  • 4. Subcellular Partitioning and Analysis of Gd3+-Loaded Ultrashort Single-Walled Carbon Nanotubes.
    Holt BD, Law JJ, Boyer PD, Wilson LJ, Dahl KN, Islam MF.
    ACS Appl Mater Interfaces; 2015 Jul 15; 7(27):14593-602. PubMed ID: 26098461
    [Abstract] [Full Text] [Related]

  • 5. Superparamagnetic gadonanotubes are high-performance MRI contrast agents.
    Sitharaman B, Kissell KR, Hartman KB, Tran LA, Baikalov A, Rusakova I, Sun Y, Khant HA, Ludtke SJ, Chiu W, Laus S, Tóth E, Helm L, Merbach AE, Wilson LJ.
    Chem Commun (Camb); 2005 Aug 21; (31):3915-7. PubMed ID: 16075070
    [Abstract] [Full Text] [Related]

  • 6. Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents.
    Allen M, Bulte JW, Liepold L, Basu G, Zywicke HA, Frank JA, Young M, Douglas T.
    Magn Reson Med; 2005 Oct 21; 54(4):807-12. PubMed ID: 16155869
    [Abstract] [Full Text] [Related]

  • 7. Gadofullerene MRI contrast agents.
    Bolskar RD.
    Nanomedicine (Lond); 2008 Apr 21; 3(2):201-13. PubMed ID: 18373426
    [Abstract] [Full Text] [Related]

  • 8. Relaxivity enhancement of aquated Tris(β-diketonate)gadolinium(III) chelates by confinement within ultrashort single-walled carbon nanotubes.
    Law JJ, Guven A, Wilson LJ.
    Contrast Media Mol Imaging; 2014 Apr 21; 9(6):409-12. PubMed ID: 24764189
    [Abstract] [Full Text] [Related]

  • 9. Magnetic resonance imaging studies on gadonanotube-reinforced biodegradable polymer nanocomposites.
    Sitharaman B, Van Der Zande M, Ananta JS, Shi X, Veltien A, Walboomers XF, Wilson LJ, Mikos AG, Heerschap A, Jansen JA.
    J Biomed Mater Res A; 2010 Jun 15; 93(4):1454-62. PubMed ID: 19927368
    [Abstract] [Full Text] [Related]

  • 10. The challenge of T1 contrast agents for high-magnetic field MRI.
    Helm L.
    Chimia (Aarau); 2011 Jun 15; 65(9):696-8. PubMed ID: 22026182
    [Abstract] [Full Text] [Related]

  • 11. Magnetic resonance imaging using gadolinium-based contrast agents.
    Mitsumori LM, Bhargava P, Essig M, Maki JH.
    Top Magn Reson Imaging; 2014 Feb 15; 23(1):51-69. PubMed ID: 24477166
    [Abstract] [Full Text] [Related]

  • 12. Contrast agents: magnetic resonance.
    Burtea C, Laurent S, Vander Elst L, Muller RN.
    Handb Exp Pharmacol; 2008 Feb 15; (185 Pt 1):135-65. PubMed ID: 18626802
    [Abstract] [Full Text] [Related]

  • 13. A novel cholic acid-based contrast enhancement agent for targeted MRI.
    Chong HS, Song HA, Lim S, Macrenaris K, Ma X, Lee H, Bui P, Meade T.
    Bioorg Med Chem Lett; 2008 Apr 01; 18(7):2505-8. PubMed ID: 18337094
    [Abstract] [Full Text] [Related]

  • 14. Gd³⁺ Tethered Gold Nanorods for Combined Magnetic Resonance Imaging and Photo-Thermal Therapy.
    Pitchaimani A, Duong T, Nguyen T, Maurmann L, Key J, Bossmann SH, Aryal S.
    J Biomed Nanotechnol; 2017 Apr 01; 13(4):417-26. PubMed ID: 29384618
    [Abstract] [Full Text] [Related]

  • 15. Cellular uptake and imaging studies of gadolinium-loaded single-walled carbon nanotubes as MRI contrast agents.
    Tang AM, Ananta JS, Zhao H, Cisneros BT, Lam EY, Wong ST, Wilson LJ, Wong KK.
    Contrast Media Mol Imaging; 2011 Apr 01; 6(2):93-9. PubMed ID: 21504063
    [Abstract] [Full Text] [Related]

  • 16. Structural effect on degradability and in vivo contrast enhancement of polydisulfide Gd(III) complexes as biodegradable macromolecular MRI contrast agents.
    Zong Y, Wang X, Jeong EK, Parker DL, Lu ZR.
    Magn Reson Imaging; 2009 May 01; 27(4):503-11. PubMed ID: 18814987
    [Abstract] [Full Text] [Related]

  • 17. Gold nanoparticles functionalized with gadolinium chelates as high-relaxivity MRI contrast agents.
    Moriggi L, Cannizzo C, Dumas E, Mayer CR, Ulianov A, Helm L.
    J Am Chem Soc; 2009 Aug 12; 131(31):10828-9. PubMed ID: 19722661
    [Abstract] [Full Text] [Related]

  • 18. Carbon nanostructures as a new high-performance platform for MR molecular imaging.
    Hartman KB, Wilson LJ.
    Adv Exp Med Biol; 2007 Aug 12; 620():74-84. PubMed ID: 18217336
    [Abstract] [Full Text] [Related]

  • 19. Gd-hydroxypyridinone (HOPO)-based high-relaxivity magnetic resonance imaging (MRI) contrast agents.
    Datta A, Raymond KN.
    Acc Chem Res; 2009 Jul 21; 42(7):938-47. PubMed ID: 19505089
    [Abstract] [Full Text] [Related]

  • 20. Chemistry of paramagnetic and diamagnetic contrast agents for Magnetic Resonance Imaging and Spectroscopy pH responsive contrast agents.
    Pérez-Mayoral E, Negri V, Soler-Padrós J, Cerdán S, Ballesteros P.
    Eur J Radiol; 2008 Sep 21; 67(3):453-8. PubMed ID: 18455343
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.