These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


324 related items for PubMed ID: 17720239

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering.
    Skaalure SC, Dimson SO, Pennington AM, Bryant SJ.
    Acta Biomater; 2014 Aug; 10(8):3409-20. PubMed ID: 24769116
    [Abstract] [Full Text] [Related]

  • 5. An approach to modulate degradation and mesenchymal stem cell behavior in poly(ethylene glycol) networks.
    Hudalla GA, Eng TS, Murphy WL.
    Biomacromolecules; 2008 Mar; 9(3):842-9. PubMed ID: 18288800
    [Abstract] [Full Text] [Related]

  • 6. Effects of bound versus soluble pentosan polysulphate in PEG/HA-based hydrogels tailored for intervertebral disc regeneration.
    Frith JE, Menzies DJ, Cameron AR, Ghosh P, Whitehead DL, Gronthos S, Zannettino AC, Cooper-White JJ.
    Biomaterials; 2014 Jan; 35(4):1150-62. PubMed ID: 24215733
    [Abstract] [Full Text] [Related]

  • 7. Effects of cross-linking molecular weights in a hyaluronic acid-poly(ethylene oxide) hydrogel network on its properties.
    Noh I, Kim GW, Choi YJ, Kim MS, Park Y, Lee KB, Kim IS, Hwang SJ, Tae G.
    Biomed Mater; 2006 Sep; 1(3):116-23. PubMed ID: 18458391
    [Abstract] [Full Text] [Related]

  • 8. In vivo evaluation of MMP sensitive high-molecular weight HA-based hydrogels for bone tissue engineering.
    Kim J, Kim IS, Cho TH, Kim HC, Yoon SJ, Choi J, Park Y, Sun K, Hwang SJ.
    J Biomed Mater Res A; 2010 Dec 01; 95(3):673-81. PubMed ID: 20725983
    [Abstract] [Full Text] [Related]

  • 9. Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels.
    Mahoney MJ, Anseth KS.
    Biomaterials; 2006 Apr 01; 27(10):2265-74. PubMed ID: 16318872
    [Abstract] [Full Text] [Related]

  • 10. Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells.
    Masters KS, Shah DN, Leinwand LA, Anseth KS.
    Biomaterials; 2005 May 01; 26(15):2517-25. PubMed ID: 15585254
    [Abstract] [Full Text] [Related]

  • 11. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications.
    Lin YC, Tan FJ, Marra KG, Jan SS, Liu DC.
    Acta Biomater; 2009 Sep 01; 5(7):2591-600. PubMed ID: 19427824
    [Abstract] [Full Text] [Related]

  • 12. Network connectivity, mechanical properties and cell adhesion for hyaluronic acid/PEG hydrogels.
    Ouasti S, Donno R, Cellesi F, Sherratt MJ, Terenghi G, Tirelli N.
    Biomaterials; 2011 Sep 01; 32(27):6456-70. PubMed ID: 21680016
    [Abstract] [Full Text] [Related]

  • 13. Synthesis and characterization of cyclic acetal based degradable hydrogels.
    Kaihara S, Matsumura S, Fisher JP.
    Eur J Pharm Biopharm; 2008 Jan 01; 68(1):67-73. PubMed ID: 17888640
    [Abstract] [Full Text] [Related]

  • 14. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds.
    Arcaute K, Mann B, Wicker R.
    Acta Biomater; 2010 Mar 01; 6(3):1047-54. PubMed ID: 19683602
    [Abstract] [Full Text] [Related]

  • 15. Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds.
    Ji Y, Ghosh K, Shu XZ, Li B, Sokolov JC, Prestwich GD, Clark RA, Rafailovich MH.
    Biomaterials; 2006 Jul 01; 27(20):3782-92. PubMed ID: 16556462
    [Abstract] [Full Text] [Related]

  • 16. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.
    Namba RM, Cole AA, Bjugstad KB, Mahoney MJ.
    Acta Biomater; 2009 Jul 01; 5(6):1884-97. PubMed ID: 19250891
    [Abstract] [Full Text] [Related]

  • 17. Synthesis and physicochemical analysis of interpenetrating networks containing modified gelatin and poly(ethylene glycol) diacrylate.
    Burmania JA, Martinez-Diaz GJ, Kao WJ.
    J Biomed Mater Res A; 2003 Oct 01; 67(1):224-34. PubMed ID: 14517880
    [Abstract] [Full Text] [Related]

  • 18. Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering.
    Shu XZ, Ahmad S, Liu Y, Prestwich GD.
    J Biomed Mater Res A; 2006 Dec 15; 79(4):902-12. PubMed ID: 16941590
    [Abstract] [Full Text] [Related]

  • 19. Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds.
    Chan BK, Wippich CC, Wu CJ, Sivasankar PM, Schmidt G.
    Macromol Biosci; 2012 Nov 15; 12(11):1490-501. PubMed ID: 23070957
    [Abstract] [Full Text] [Related]

  • 20. Effects of epidermal growth factor on fibroblast migration through biomimetic hydrogels.
    Gobin AS, West JL.
    Biotechnol Prog; 2003 Nov 15; 19(6):1781-5. PubMed ID: 14656156
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.