These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
182 related items for PubMed ID: 17725535
1. Biochemical manipulation via iron chelation to enhance porphyrin production from porphyrin precursors. Curnow A, Pye A. J Environ Pathol Toxicol Oncol; 2007; 26(2):89-103. PubMed ID: 17725535 [Abstract] [Full Text] [Related]
2. An experimental investigation of a novel iron chelating protoporphyrin IX prodrug for the enhancement of photodynamic therapy. Anayo L, Magnussen A, Perry A, Wood M, Curnow A. Lasers Surg Med; 2018 Jul; 50(5):552-565. PubMed ID: 29603761 [Abstract] [Full Text] [Related]
3. The effects of protoporphyrin IX-induced photodynamic therapy with and without iron chelation on human squamous carcinoma cells cultured under normoxic, hypoxic and hyperoxic conditions. Blake E, Allen J, Curnow A. Photodiagnosis Photodyn Ther; 2013 Dec; 10(4):575-82. PubMed ID: 24284114 [Abstract] [Full Text] [Related]
4. Improving in vitro photodynamic therapy through the development of a novel iron chelating aminolaevulinic acid prodrug. Curnow A, Perry A, Wood M. Photodiagnosis Photodyn Ther; 2019 Mar; 25():157-165. PubMed ID: 30553949 [Abstract] [Full Text] [Related]
5. Direct comparison of delta-aminolevulinic acid and methyl-aminolevulinate-derived protoporphyrin IX accumulations potentiated by desferrioxamine or the novel hydroxypyridinone iron chelator CP94 in cultured human cells. Pye A, Curnow A. Photochem Photobiol; 2007 Mar; 83(3):766-73. PubMed ID: 17576385 [Abstract] [Full Text] [Related]
6. An in vitro comparison of the effects of the iron-chelating agents, CP94 and dexrazoxane, on protoporphyrin IX accumulation for photodynamic therapy and/or fluorescence guided resection. Blake E, Allen J, Curnow A. Photochem Photobiol; 2011 Mar; 87(6):1419-26. PubMed ID: 21834866 [Abstract] [Full Text] [Related]
7. The efficacy of an iron chelator (CP94) in increasing cellular protoporphyrin IX following intravesical 5-aminolaevulinic acid administration: an in vivo study. Chang SC, MacRobert AJ, Porter JB, Bown SG. J Photochem Photobiol B; 1997 Apr; 38(2-3):114-22. PubMed ID: 9203372 [Abstract] [Full Text] [Related]
8. The hydroxypyridinone iron chelator CP94 can enhance PpIX-induced PDT of cultured human glioma cells. Blake E, Curnow A. Photochem Photobiol; 2010 Apr; 86(5):1154-60. PubMed ID: 20573043 [Abstract] [Full Text] [Related]
9. Enhancement of methyl-aminolevulinate photodynamic therapy by iron chelation with CP94: an in vitro investigation and clinical dose-escalating safety study for the treatment of nodular basal cell carcinoma. Pye A, Campbell S, Curnow A. J Cancer Res Clin Oncol; 2008 Aug; 134(8):841-9. PubMed ID: 18239941 [Abstract] [Full Text] [Related]
10. Experimental investigation of a combinational iron chelating protoporphyrin IX prodrug for fluorescence detection and photodynamic therapy. Magnussen A, Reburn C, Perry A, Wood M, Curnow A. Lasers Med Sci; 2022 Mar; 37(2):1155-1166. PubMed ID: 34218351 [Abstract] [Full Text] [Related]
11. The hydroxypyridinone iron chelator CP94 increases methyl-aminolevulinate-based photodynamic cell killing by increasing the generation of reactive oxygen species. Dogra Y, Ferguson DCJ, Dodd NJF, Smerdon GR, Curnow A, Winyard PG. Redox Biol; 2016 Oct; 9():90-99. PubMed ID: 27454766 [Abstract] [Full Text] [Related]
12. Enhancement of 5-aminolaevulinic acid-induced photodynamic therapy in normal rat colon using hydroxypyridinone iron-chelating agents. Curnow A, McIlroy BW, Postle-Hacon MJ, Porter JB, MacRobert AJ, Bown SG. Br J Cancer; 1998 Nov; 78(10):1278-82. PubMed ID: 9823966 [Abstract] [Full Text] [Related]
13. The effect of an iron chelating agent on protoporphyrin IX levels and phototoxicity in topical 5-aminolaevulinic acid photodynamic therapy. Choudry K, Brooke RC, Farrar W, Rhodes LE. Br J Dermatol; 2003 Jul; 149(1):124-30. PubMed ID: 12890205 [Abstract] [Full Text] [Related]
14. Clinical investigation of the novel iron-chelating agent, CP94, to enhance topical photodynamic therapy of nodular basal cell carcinoma. Campbell SM, Morton CA, Alyahya R, Horton S, Pye A, Curnow A. Br J Dermatol; 2008 Aug; 159(2):387-93. PubMed ID: 18544077 [Abstract] [Full Text] [Related]
15. Analysis of Renal Cell Carcinoma Cell Response to the Enhancement of 5-aminolevulinic Acid-mediated Protoporphyrin IX Fluorescence by Iron Chelator Deferoxamine†. Howley R, Mansi M, Shinde J, Restrepo J, Chen B. Photochem Photobiol; 2023 Mar; 99(2):787-792. PubMed ID: 35857390 [Abstract] [Full Text] [Related]
16. The influence of iron chelators on the accumulation of protoporphyrin IX in 5-aminolaevulinic acid-treated cells. Berg K, Anholt H, Bech O, Moan J. Br J Cancer; 1996 Sep; 74(5):688-97. PubMed ID: 8795569 [Abstract] [Full Text] [Related]
17. Iron chelation promotes 5-aminolaevulinic acid-based photodynamic therapy against oral tongue squamous cell carcinoma. Qin J, Zhou C, Zhu M, Shi S, Zhang L, Zhao Y, Li C, Wang Y, Wang Y. Photodiagnosis Photodyn Ther; 2020 Sep; 31():101907. PubMed ID: 32619712 [Abstract] [Full Text] [Related]
18. A comparative study on the enhancement efficacy of specific and non-specific iron chelators for protoporphyrin IX production and photosensitization in HaCat cells. Xia Y, Huang Y, Lin L, Liu X, Jiang S, Xiong L. J Huazhong Univ Sci Technolog Med Sci; 2009 Dec; 29(6):765-70. PubMed ID: 20037824 [Abstract] [Full Text] [Related]
19. Desferrioxamine Enhances 5-Aminolaevulinic Acid- Induced Protoporphyrin IX Accumulation and Therapeutic Efficacy for Hypertrophic Scar. Chen Y, Deng H, Yang L, Guo L, Feng M. J Pharm Sci; 2023 Jun; 112(6):1635-1643. PubMed ID: 36682488 [Abstract] [Full Text] [Related]
20. 5-aminolevulinic acid-mediated photodynamic therapy on Hep-2 and MCF-7c3 cells. Alvarez MG, Lacelli MS, Rivarola V, Batlle A, Fukuda H. J Environ Pathol Toxicol Oncol; 2007 Jun; 26(2):75-82. PubMed ID: 17725533 [Abstract] [Full Text] [Related] Page: [Next] [New Search]