These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
324 related items for PubMed ID: 17727270
1. Optimization of microfluidic fuel cells using transport principles. Lee J, Lim KG, Palmore GT, Tripathi A. Anal Chem; 2007 Oct 01; 79(19):7301-7. PubMed ID: 17727270 [Abstract] [Full Text] [Related]
2. Microfluidic biofuel cells: the influence of electrode diffusion layer on performance. Lim KG, Palmore GT. Biosens Bioelectron; 2007 Jan 15; 22(6):941-7. PubMed ID: 16753293 [Abstract] [Full Text] [Related]
3. Active control of the depletion boundary layers in microfluidic electrochemical reactors. Yoon SK, Fichtl GW, Kenis PJ. Lab Chip; 2006 Dec 15; 6(12):1516-24. PubMed ID: 17203155 [Abstract] [Full Text] [Related]
4. A microfluidic fuel cell with flow-through porous electrodes. Kjeang E, Michel R, Harrington DA, Djilali N, Sinton D. J Am Chem Soc; 2008 Mar 26; 130(12):4000-6. PubMed ID: 18314983 [Abstract] [Full Text] [Related]
5. An electrochemically driven poly(dimethylsiloxane) microfluidic actuator: oxygen sensing and programmable flows and pH gradients. Mitrovski SM, Nuzzo RG. Lab Chip; 2005 Jun 26; 5(6):634-45. PubMed ID: 15915256 [Abstract] [Full Text] [Related]
6. Microfluidic devices for energy conversion: planar integration and performance of a passive, fully immersed H2-O2 fuel cell. Mitrovski SM, Elliott LC, Nuzzo RG. Langmuir; 2004 Aug 17; 20(17):6974-6. PubMed ID: 15301473 [Abstract] [Full Text] [Related]
7. Remotely powered distributed microfluidic pumps and mixers based on miniature diodes. Chang ST, Beaumont E, Petsev DN, Velev OD. Lab Chip; 2008 Jan 17; 8(1):117-24. PubMed ID: 18094769 [Abstract] [Full Text] [Related]
9. Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel. Lin YC, Chung YC, Wu CY. Biomed Microdevices; 2007 Apr 17; 9(2):215-21. PubMed ID: 17165126 [Abstract] [Full Text] [Related]
10. Achieving uniform mixing in a microfluidic device: hydrodynamic focusing prior to mixing. Park HY, Qiu X, Rhoades E, Korlach J, Kwok LW, Zipfel WR, Webb WW, Pollack L. Anal Chem; 2006 Jul 01; 78(13):4465-73. PubMed ID: 16808455 [Abstract] [Full Text] [Related]
11. Membrane-activated microfluidic rotary devices for pumping and mixing. Tseng HY, Wang CH, Lin WY, Lee GB. Biomed Microdevices; 2007 Aug 01; 9(4):545-54. PubMed ID: 17505888 [Abstract] [Full Text] [Related]
12. Electrokinetically-driven flow mixing in microchannels with wavy surface. Chen CK, Cho CC. J Colloid Interface Sci; 2007 Aug 15; 312(2):470-80. PubMed ID: 17442332 [Abstract] [Full Text] [Related]
13. Gravity-induced convective flow in microfluidic systems: electrochemical characterization and application to enzyme-linked immunosorbent assay tests. Morier P, Vollet C, Michel PE, Reymond F, Rossier JS. Electrophoresis; 2004 Nov 15; 25(21-22):3761-8. PubMed ID: 15565685 [Abstract] [Full Text] [Related]
18. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Park JS, Song SH, Jung HI. Lab Chip; 2009 Apr 07; 9(7):939-48. PubMed ID: 19294305 [Abstract] [Full Text] [Related]