These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


148 related items for PubMed ID: 177415

  • 1. Chromium(III)-adenosine triphosphate as a paramagnetic probe to determine intersubstrate distances on pyruvate kinase. Detection of an active enzyme-metal-ATP-metal complex.
    Gupta RK, Fung CH, Mildvan AS.
    J Biol Chem; 1976 Apr 25; 251(8):2421-30. PubMed ID: 177415
    [Abstract] [Full Text] [Related]

  • 2. Characterization of ATP binding sites of sheep kidney medulla (Na+ + K+)--ATPase using CrATP.
    Grisham CM.
    J Inorg Biochem; 1981 Feb 25; 14(1):45-57. PubMed ID: 6260898
    [Abstract] [Full Text] [Related]

  • 3. Dual divalent cation requirement for activation of pyruvate kinase; essential roles of both enzyme- and nucleotide-bound metal ions.
    Gupta RK, Oesterling RM.
    Biochemistry; 1976 Jun 29; 15(13):2881-7. PubMed ID: 7293
    [Abstract] [Full Text] [Related]

  • 4. Magnetic resonance studies of the spatial arrangement of glucose-6-phosphate and chromium (III)-adenosine diphosphate at the catalytic site of hexokinase.
    Petersen RL, Gupta BK.
    Biophys J; 1979 Jul 29; 27(1):1-14. PubMed ID: 233578
    [Abstract] [Full Text] [Related]

  • 5. Nuclear magnetic relaxation studies of the conformation of adenosine 5'-triphosphate on pyruvate kinase from rabbit muscle.
    Sloan DL, Mildvan AS.
    J Biol Chem; 1976 Apr 25; 251(8):2412-20. PubMed ID: 177414
    [Abstract] [Full Text] [Related]

  • 6. Lithium-7 nuclear magnetic resonance, water proton nuclear magnetic resonance, and gadolinium electron paramagnetic resonance studies of the sarcoplasmic reticulum calcium ion transport adenosine triphosphatase.
    Stephens EM, Grisham CM.
    Biochemistry; 1979 Oct 30; 18(22):4876-85. PubMed ID: 228703
    [Abstract] [Full Text] [Related]

  • 7. Magnetic resonance studies of the interaction of Co2+ and phosphoenolpyruvate with pyruvate kinase.
    Melamud E, Mildvan AS.
    J Biol Chem; 1975 Oct 25; 250(20):8193-201. PubMed ID: 1236850
    [Abstract] [Full Text] [Related]

  • 8. Conformations and arrangement of substrates at active sites of ATP-utilizing enzymes.
    Mildvan AS.
    Philos Trans R Soc Lond B Biol Sci; 1981 Jun 26; 293(1063):65-74. PubMed ID: 6115425
    [Abstract] [Full Text] [Related]

  • 9. 7Li, 31P, and 1H NMR studies of interactions between ATP, monovalent cations, and divalent cation sites on rabbit muscle pyruvate kinase.
    Van Divender JM, Grisham CM.
    J Biol Chem; 1985 Nov 15; 260(26):14060-9. PubMed ID: 2997192
    [Abstract] [Full Text] [Related]

  • 10. Electron paramagnetic resonance studies of the coordination schemes and site selectivities for divalent metal ions in complexes with pyruvate kinase.
    Buchbinder JL, Reed GH.
    Biochemistry; 1990 Feb 20; 29(7):1799-806. PubMed ID: 2158815
    [Abstract] [Full Text] [Related]

  • 11. Mechanism of malic enzyme from pigeon liver. Magnetic resonance and kinetic studies of the role of Mn2+.
    Hsu RY, Mildvan AS, Chang G, Fung C.
    J Biol Chem; 1976 Nov 10; 251(21):6574-83. PubMed ID: 988026
    [Abstract] [Full Text] [Related]

  • 12. Magnetic resonance studies of the proximity and spatial arrangement of propionyl coenzyme A and pyruvate on a biotin-metalloenzyme, transcarboxylase.
    Fung CH, Gupta RK, Mildvan AS.
    Biochemistry; 1976 Jan 13; 15(1):85-92. PubMed ID: 174714
    [Abstract] [Full Text] [Related]

  • 13. Structure of the oxalate-ATP complex with pyruvate kinase: ATP as a bridging ligand for the two divalent cations.
    Lodato DT, Reed GH.
    Biochemistry; 1987 Apr 21; 26(8):2243-50. PubMed ID: 3040085
    [Abstract] [Full Text] [Related]

  • 14. Magnetic resonance and kinetic studies of pyruvate, phosphate dikinase. Interaction of oxalate with the phosphorylated form of the enzyme.
    Michaels G, Milner Y, Reed GH.
    Biochemistry; 1975 Jul 15; 14(14):3213-9. PubMed ID: 167819
    [Abstract] [Full Text] [Related]

  • 15. Arrangement of the substrates at the active site of brain pyridoxal kinase.
    Wolkers WF, Gregory JD, Churchich JE, Serpersu EH.
    J Biol Chem; 1991 Nov 05; 266(31):20761-6. PubMed ID: 1939126
    [Abstract] [Full Text] [Related]

  • 16. Magnetic resonance measurements of intersubstrate distances at the active site of protein kinase using substitution-inert cobalt(III) and chromium(III) complexes of adenosine 5'-(beta, gamma-methylenetriphosphate).
    Granot J, Mildvan AS, Bramson HN, Kaiser ET.
    Biochemistry; 1980 Jul 22; 19(15):3537-43. PubMed ID: 6893273
    [Abstract] [Full Text] [Related]

  • 17. Mandelate racemase from Pseudomonas putida. Magnetic resonance and kinetic studies of the mechanism of catalysis.
    Maggio ET, Kenyon GL, Mildvan AS, Hegeman GD.
    Biochemistry; 1975 Mar 25; 14(6):1131-9. PubMed ID: 164210
    [Abstract] [Full Text] [Related]

  • 18. Use of chromium-adenosine triphosphate and lyxose to elucidate the kinetic mechanism and coordination state of the nucleotide substrate for yeast hexokinase.
    Danenberg KD, Cleland WW.
    Biochemistry; 1975 Jan 14; 14(1):28-39. PubMed ID: 1089014
    [Abstract] [Full Text] [Related]

  • 19. Manganese (II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). II. Electron paramagnetic resonance and nuclear magnetic resonance studies of enzyme-bound manganese(II) with substrates and a potential transition-state analogue, methionine sulfoximine.
    Villafranca JJ, Ash DE, Wedler FC.
    Biochemistry; 1976 Feb 10; 15(3):544-53. PubMed ID: 3200
    [Abstract] [Full Text] [Related]

  • 20. Magnetic resonance study of the three-dimensional structure of creatine kinase-substrate complexes. Implications for substrate specificity and catalytic mechanism.
    McLaughlin AC, Leigh JS, Cohn M.
    J Biol Chem; 1976 May 10; 251(9):2777-87. PubMed ID: 177421
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.