These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


174 related items for PubMed ID: 177470

  • 21. Ethanol catabolism in Corynebacterium glutamicum.
    Arndt A, Auchter M, Ishige T, Wendisch VF, Eikmanns BJ.
    J Mol Microbiol Biotechnol; 2008; 15(4):222-33. PubMed ID: 17693703
    [Abstract] [Full Text] [Related]

  • 22. Biochemical basis of mitochondrial acetaldehyde dismutation in Saccharomyces cerevisiae.
    Thielen J, Ciriacy M.
    J Bacteriol; 1991 Nov; 173(21):7012-7. PubMed ID: 1938903
    [Abstract] [Full Text] [Related]

  • 23. Cre-lox66/lox71-based elimination of phosphotransacetylase or acetaldehyde dehydrogenase shifted carbon flux in acetogen rendering selective overproduction of ethanol or acetate.
    Berzin V, Kiriukhin M, Tyurin M.
    Appl Biochem Biotechnol; 2012 Nov; 168(6):1384-93. PubMed ID: 22941272
    [Abstract] [Full Text] [Related]

  • 24. Liver aldehyde and alcohol dehydrogenase activities in rat strains genetically selected for their ethanol preference.
    Koivula T, Koivusalo M, Lindros KO.
    Biochem Pharmacol; 1975 Oct 01; 24(19):1807-11. PubMed ID: 184794
    [No Abstract] [Full Text] [Related]

  • 25. Acetaldehyde levels during ethanol oxidation: a diet-induced change and its relation to liver aldehyde dehydrogenases and redox states.
    Lindros KO, Koivula T, Eriksson CJ.
    Life Sci; 1975 Nov 15; 17(10):1589-97. PubMed ID: 1207376
    [No Abstract] [Full Text] [Related]

  • 26. Biology of disease. Alcoholism and aldehydism: new biomedical concepts.
    von Wartburg JP, Bühler R.
    Lab Invest; 1984 Jan 15; 50(1):5-15. PubMed ID: 6363815
    [Abstract] [Full Text] [Related]

  • 27. Growth of the acetogenic bacterium Acetobacterium woodii by dismutation of acetaldehyde to acetate and ethanol.
    Trifunović D, Berghaus N, Müller V.
    Environ Microbiol Rep; 2020 Feb 15; 12(1):58-62. PubMed ID: 31715654
    [Abstract] [Full Text] [Related]

  • 28. Effect of a low-protein diet on acetaldehyde metabolism in rats.
    Lindros KO, Pekkanen L, Koivula T.
    Acta Pharmacol Toxicol (Copenh); 1977 Jan 15; 40(1):134-44. PubMed ID: 576354
    [Abstract] [Full Text] [Related]

  • 29. Ferredoxin-dependent conversion of acetaldehyde to acetate and H 2 in extracts of S organism.
    Reddy CA, Bryant MP, Wolin MJ.
    J Bacteriol; 1972 Apr 15; 110(1):133-8. PubMed ID: 4552984
    [Abstract] [Full Text] [Related]

  • 30. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.
    Pavlova SI, Jin L, Gasparovich SR, Tao L.
    Microbiology (Reading); 2013 Jul 15; 159(Pt 7):1437-1446. PubMed ID: 23637459
    [Abstract] [Full Text] [Related]

  • 31. Diacetyl biosynthesis in Streptococcus diacetilactis and Leuconostoc citrovorum.
    Speckman RA, Collins EB.
    J Bacteriol; 1968 Jan 15; 95(1):174-80. PubMed ID: 5636815
    [Abstract] [Full Text] [Related]

  • 32. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast.
    Zhang GC, Kong II, Wei N, Peng D, Turner TL, Sung BH, Sohn JH, Jin YS.
    Biotechnol Bioeng; 2016 Dec 15; 113(12):2587-2596. PubMed ID: 27240865
    [Abstract] [Full Text] [Related]

  • 33. Aldehyde dehydrogenase activity and acetate production by aerobic bacteria representing the normal flora of human large intestine.
    Nosova T, Jokelainen K, Kaihovaara P, Jousimies-Somer H, Siitonen A, Heine R, Salaspuro M.
    Alcohol Alcohol; 1996 Nov 15; 31(6):555-64. PubMed ID: 9010546
    [Abstract] [Full Text] [Related]

  • 34. [Utilization of lactic bacteria in the control of pathogenic microorganisms in food].
    Hernández PE, Rodríguez JM, Cintas LM, Moreira WL, Sobrino OJ, Fernández MF, Sanz B.
    Microbiologia; 1993 Feb 15; 9 Spec No():37-48. PubMed ID: 8484916
    [Abstract] [Full Text] [Related]

  • 35. Metabolism of acetaldehyde and custers effect in the yeast.
    Carrascosa JM, Viguera MD, Núñez de Castro I, Scheffers WA.
    Antonie Van Leeuwenhoek; 1981 Feb 15; 47(3):209-15. PubMed ID: 6115615
    [Abstract] [Full Text] [Related]

  • 36. Effect of fructose and glyceraldehyde on ethanol metabolism in human liver and in rat liver.
    Thieden HI, Grunnet N, Damgaard SE, Sestoft L.
    Eur J Biochem; 1972 Oct 15; 30(2):250-61. PubMed ID: 4145889
    [No Abstract] [Full Text] [Related]

  • 37. Microbial metabolism of amino alcohols. Aminoacetone metabolism via 1-aminopropan-2-ol in Pseudomonas sp. N.C.I.B. 8858.
    Faulkner A, Turner JM.
    Biochem J; 1974 Feb 15; 138(2):263-76. PubMed ID: 4362743
    [Abstract] [Full Text] [Related]

  • 38. Heterologous phosphoketolase expression redirects flux towards acetate, perturbs sugar phosphate pools and increases respiratory demand in Saccharomyces cerevisiae.
    Bergman A, Hellgren J, Moritz T, Siewers V, Nielsen J, Chen Y.
    Microb Cell Fact; 2019 Feb 01; 18(1):25. PubMed ID: 30709397
    [Abstract] [Full Text] [Related]

  • 39. Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1.
    Tanaka K, Komiyama A, Sonomoto K, Ishizaki A, Hall SJ, Stanbury PF.
    Appl Microbiol Biotechnol; 2002 Oct 01; 60(1-2):160-7. PubMed ID: 12382058
    [Abstract] [Full Text] [Related]

  • 40. Carbohydrate metabolism in Spirochaeta stenostrepta.
    Hespell RB, Canale-Parola E.
    J Bacteriol; 1970 Jul 01; 103(1):216-26. PubMed ID: 5423371
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.