These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


110 related items for PubMed ID: 17763039

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Pesticide residues in grapes from vineyards included in integrated pest management in Slovenia.
    Cesnik HB, Gregorcic A, Cus F.
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Apr; 25(4):438-43. PubMed ID: 18348043
    [Abstract] [Full Text] [Related]

  • 25. Plant protection product residues in white grapes and wines of "Malvasia Istriana" produced in Istria.
    Baša Česnik H, Velikonja Bolta Š, Bavčar D, Radeka S, Lisjak K.
    Food Addit Contam Part B Surveill; 2016 Dec; 9(4):256-260. PubMed ID: 27397558
    [Abstract] [Full Text] [Related]

  • 26. Determination of fungicides in wine by mixed-mode solid phase extraction and liquid chromatography coupled to tandem mass spectrometry.
    Carpinteiro I, Ramil M, Rodríguez I, Cela R.
    J Chromatogr A; 2010 Nov 26; 1217(48):7484-92. PubMed ID: 20971470
    [Abstract] [Full Text] [Related]

  • 27. Fenhexamid residues in grapes and wine.
    Cabras P, Angioni A, Garau VL, Pirisi FM, Cabitza F, Pala M, Farris GA.
    Food Addit Contam; 2001 Jul 26; 18(7):625-9. PubMed ID: 11469318
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Optimization of two-dimensional gas chromatography time-of-flight mass spectrometry for separation and estimation of the residues of 160 pesticides and 25 persistent organic pollutants in grape and wine.
    Dasgupta S, Banerjee K, Patil SH, Ghaste M, Dhumal KN, Adsule PG.
    J Chromatogr A; 2010 Jun 11; 1217(24):3881-9. PubMed ID: 20435316
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Determination of volatile phenols in red wines by dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry detection.
    Fariña L, Boido E, Carrau F, Dellacassa E.
    J Chromatogr A; 2007 Jul 20; 1157(1-2):46-50. PubMed ID: 17517420
    [Abstract] [Full Text] [Related]

  • 37. Fungicides in red wines produced in South America.
    Vargas TS, Salustriano NA, Klein B, Romão W, Silva SRCD, Wagner R, Scherer R.
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Nov 20; 35(11):2135-2144. PubMed ID: 30352006
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Disappearance of fenhexamid residues during wine-making process.
    Oliva J, Barba A, Payá P, Cámara MA.
    Commun Agric Appl Biol Sci; 2006 Nov 20; 71(2 Pt A):65-74. PubMed ID: 17390774
    [Abstract] [Full Text] [Related]

  • 40. Development of a dispersive liquid-liquid microextraction method for the simultaneous determination of the main compounds causing cork taint and Brett character in wines using gas chromatography-tandem mass spectrometry.
    Pizarro C, Sáenz-González C, Pérez-del-Notario N, González-Sáiz JM.
    J Chromatogr A; 2011 Mar 25; 1218(12):1576-84. PubMed ID: 21295311
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.